精英家教网 > 高中数学 > 题目详情
5.已知A,B是锐角三角形ABC的两个内角,设m=tanA•tanB,f(x)=logmx,则下列各式一点成立的是(  )
A.f(cosA)>f(sinB)B.f(sinA)>f(cosB)C.f(cosA)≥f(sinB)D.f(sinA)≥f(cosB)

分析 由已知条件可得tanA>0,tanB>0,$\frac{π}{2}$<A+B<π,求出tan(A+B)=$\frac{tanA+tanB}{1-tanA•tanB}$<0,得到tanA•tanB>1,再根据对数的运算性质即可判断答案.

解答 解:A、B是锐角三角形的两内角,则$0<A<\frac{π}{2}$,$0<B<\frac{π}{2}$,
∴$\frac{π}{2}<A+B<π$,
∴tanA>0,tanB>0,
∴tan(A+B)=$\frac{tanA+tanB}{1-tanA•tanB}$<0,
得1-tanAtanB<0,
∴tanA•tanB>1.
∴f(x)=logmx单调递增,
由A+B$>\frac{π}{2}$,得sinA>cosB.
∴f(sinA)>f(cosB).
故选:B.

点评 本题考查了两角和的正切函数,考查了对数的运算性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届重庆市高三10月月考数学(文)试卷(解析版) 题型:填空题

某同学先后投掷一枚骰子两次,第一次向上的点数记为,第二次向上的点数记为,在直角坐标系中,以为坐标的点落在直线上的概率为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设m,n∈R,若直线mx+ny=2与圆x2+y2=1相切,则m+n的取值范围是(  )
A.[-2,2]B.[-∞,-2]∪[2,+∞)C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.(-∞,-2$\sqrt{2}$]∪[2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆B的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:
①对于任意一个圆B,其“优美函数”有无数个;
②函数f(x)=ln(x2+$\sqrt{{x}^{2}+1}$可以是某个圆的“优美函数”;
③正弦函数y=sinx可以同时是无数个圆的“优美函数”;
④函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.
其中正确的命题是(  )
A.①③B.①③④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若不等式(a2+a)x2-ax+1>0对任意实数x都成立,则实数a的取值范围是{x|-$\frac{4}{3}$<a<-1或a=0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=$\sqrt{6}$,AC=CD=2,DE=BE=1.
(1)证明:DE⊥平面ACD;
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=cos(2x+φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{6}$个单位后得到的函数是奇函数,则函数f(x)的图象(  )
A.关于点(-$\frac{π}{3}$,0)对称B.关于直线x=-$\frac{π}{6}$对称
C.关于点($\frac{π}{12}$,0)对称D.关于直线x=$\frac{π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知复数z1=2+3i,z2=t-i,则z1•$\overline{{z}_{2}}$是实数,则实数t=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若实数a,b,c成等差数列,点P(-1,0)在动直线ax+by+c=0上的投影为M,点N(3,3),则线段MN长度的取值范围为[5-$\sqrt{2}$,5+$\sqrt{2}$].

查看答案和解析>>

同步练习册答案