精英家教网 > 高中数学 > 题目详情
14.若实数a,b,c成等差数列,点P(-1,0)在动直线ax+by+c=0上的投影为M,点N(3,3),则线段MN长度的取值范围为[5-$\sqrt{2}$,5+$\sqrt{2}$].

分析 由a,b,c成等差数列,利用等差数列的性质得到2b=a+c,整理后与直线方程ax+by+c=0比较发现,直线ax+by+c=0恒过Q(1,-2),再由点P(-1,0)在动直线ax+by+c=0上的射影为M,得到PM与QM垂直,利用圆周角定理得到M在以PQ为直径的圆上,由P和Q的坐标,利用中点坐标公式求出圆心A的坐标,利用两点间的距离公式求出此圆的半径r,线段MN长度的最值即为M与圆心A的距离与半径的和与差,求出即可.

解答 解:∵a,b,c成等差数列,
∴2b=a+c,即a-2b+c=0,
可得方程ax+by+c=0恒过Q(1,-2),
又点P(-1,0)在动直线ax+by+c=0上的射影为M,
∴∠PMQ=90°,
∴M在以PQ为直径的圆上,
∴此圆的圆心A坐标为($\frac{1-1}{2}$,$\frac{-2+0}{2}$),即A(0,-1),半径r=$\frac{1}{2}$|PQ|=$\frac{1}{2}$$\sqrt{(1+1)^{2}+({-2)}^{2}}$=$\sqrt{2}$,
又N(3,3),
∴|AN|=5,
则|MN|max=5+$\sqrt{2}$,最小值为5-$\sqrt{2}$,所以线段MN的范围为:[5-$\sqrt{2}$,5+$\sqrt{2}$].
故答案为:[5-$\sqrt{2}$,5+$\sqrt{2}$].

点评 此题考查了等差数列的性质,恒过定点的直线方程,圆周角定理,线段中点坐标公式,以及两点间的距离公式,利用等差数列的性质得到2b=a+c,即a-2b+c=0是解本题的突破点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知A,B是锐角三角形ABC的两个内角,设m=tanA•tanB,f(x)=logmx,则下列各式一点成立的是(  )
A.f(cosA)>f(sinB)B.f(sinA)>f(cosB)C.f(cosA)≥f(sinB)D.f(sinA)≥f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平行四边形ABCD中,F是CD边的中点,AF与BD相交于E,则$\overrightarrow{AE}$=(  )
A.$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$B.$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AD}$C.$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{4}{5}$$\overrightarrow{AD}$D.$\frac{2}{5}$$\overrightarrow{AB}$+$\frac{3}{5}$$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)是周期为2的函数,当-1≤x≤1时,f(x)=|x|,则当函数y=f(x)-kx(k>0)有四个零点时.实数k的取值范围是($\frac{1}{5}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源:2017届陕西汉中城固县高三10月调研数学(文)试卷(解析版) 题型:选择题

是函数定义域内的一个区间,若存在,使得,则称的一个“次不动点”,也称在区间上存在次不动点.若函数在区间上存在次不动点,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数 f (x)=$\left\{\begin{array}{l}{3^{-x}}-1,x<0\\ 2\sqrt{x},x≥0\end{array}\right.$,若函数 g (x)=f (x)-x-b 有三个零点,则实数b的取值范围为(  )
A.(0,1)B.(1,2)C.(1,2]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3-2x2+3x+b(b∈R).
(Ⅰ)当b=0时,求f(x)在[1,4]上的值域;
(Ⅱ)若函数f(x)有三个不同的零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若c=3,且$\frac{sinC}{sinB}$=$\frac{3}{5}$.
(1)求b;
(2)若a=7,求∠A.

查看答案和解析>>

科目:高中数学 来源:2017届陕西汉中城固县高三10月调研数学(理)试卷(解析版) 题型:选择题

在矩形中,点的中点,,则( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案