精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x-sinx.若直线l与函数y=f(x)的图象交于A(x1,y1),B(x2,y2)(x1<x2)两点,证明:直线l的斜率k>0.

分析 求出直线斜率k=1-$\frac{si{nx}_{2}-si{nx}_{1}}{{{x}_{2}-x}_{1}}$,根据f(x)递增得到即x1-sinx1<x2-sinx2,求出  $\frac{si{nx}_{2}-si{nx}_{1}}{{{x}_{2}-x}_{1}}$<1,从而求出k>0.

解答 证明:(Ⅰ)直线l与函数y=f(x)的图象交于A(x1,y1),B(x2,y2(x1<x2)两点,
∴k=$\frac{{{y}_{2}-y}_{1}}{{{x}_{2}-x}_{1}}$=1-$\frac{si{nx}_{2}-si{nx}_{1}}{{{x}_{2}-x}_{1}}$,
∵f′(x)=1-cosx≥0,∴f(x)是增函数,
∴f(x1)<f(x2),即x1-sinx1<x2-sinx2
∴$\frac{si{nx}_{2}-si{nx}_{1}}{{{x}_{2}-x}_{1}}$<1,
∴k=1-$\frac{si{nx}_{2}-si{nx}_{1}}{{{x}_{2}-x}_{1}}$>0,
即直线l的斜率k>0;

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知α=-1920°
(1)将α写成β+2kπ(k∈Z,0≤β<2π)的形式,并指出它是第几象限角
(2)求与α终边相同的角θ,满足-4π≤θ<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,a,b,c分别是角A,B,C所对的边长,a=2$\sqrt{3}$,tan$\frac{A+B}{2}+tan\frac{C}{2}$=4,sinBsinC=cos2$\frac{A}{2}$.则b=(  )
A.$\sqrt{3}$B.2C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x.y满足约束条件$\left\{\begin{array}{l}{y≥3x-3}\\{2y≤x+4}\\{3x+4y+12≥0}\end{array}\right.$,则z=2x-y的最大值为(  )
A.-1B.6C.3D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.O为坐标原点,P为椭圆$\left\{\begin{array}{l}{x=3cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数)上一点,对应的参数φ=$\frac{π}{6}$,那么直线OP的倾斜角的正切值是$\frac{2\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了调查学生星期天晚上学习时间利用问题,某校从2015-2016学年高二年级1000名学生(其中走读生450名,住宿生550名)中,采用分层抽样的方法抽取n名学生进行问卷调查,根据问卷取得了这n名同学每天晚上学习时间(单位:分钟)的数据,按照以下区间分为八组①[0,30),②[30,60),③[60,90),④[90,120),⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),得到频率分布直方图如图,已知抽取的学生中星期天晚上学习时间少于60分钟的人数为5人.
(1)求n的值;
(2)如果“学生晚上学习时间达到两小时”,则认为其利用时间充分,否则,认为利用时间不充分;对抽取的n名学生,完成下列2×2列联表:
利用时间充分利用时间不充分合计
走读生30  
住校生 10 
合计  
据此资料,是否有95%的把握认为“学生利用时间是否充分”与“走读、住校”有关?
(3)若在第①组、第②组共抽出2人调查影响有效利用时间的原因,求抽出的2人中第①组、第②组各有1人的概率.

附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$

p(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.复数z=(a2-2a-3)+(|a-2|-1)i是纯虚数,则实数a的取值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知i是虚数单位,复数z满足$\frac{z}{1-z}$=i,则$\overline z$=(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}$i-$\frac{1}{2}$D.-$\frac{1}{2}$i-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列{an}中,a1=1,$\frac{{a}_{n}}{{a}_{n-1}}$=2n(n≥2,n∈N),则{an}的通项公式为an=${2}^{\frac{(n-1)(n+2)}{2}}$.

查看答案和解析>>

同步练习册答案