精英家教网 > 高中数学 > 题目详情
12.设数列{an}的前n项和为Sn,令Tn=$\frac{{S}_{1}+{S}_{2}+…+{S}_{n}}{n}$,称Tn为数列a1,a2,…,an的“理想数”,已知数列a1,a2,…,a500的“理想数”为2004,求数列15,a1,a2,…,a500的“理想数”.

分析 由新定义可知S1+S2+S3+…+S500=2004×500,所以新数列中对应的理想数的分子为15×501+2004×500.代入新定义计算即可求出.

解答 解:∵数列a1,a2,…,a500的“理想数”为2004,∴S1+S2+S3+…+S500=2004×500.
设数列15,a1,a2,…,a500的前n项和为An,则An=Sn-1+15.
∴A1+A2+A3+…+A501=15+(S1+15)+(S2+15)+…+(S500+15)=15×501+2004×500.
∴数列15,a1,a2,…,a500的“理想数”为$\frac{15×501+2004×500}{501}$=15+2000=2015.

点评 本题考查了对新定义的理解和数列求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,四个全等的直角三角形围成一个大正方形和一个小正方形,若直角三角形较长的直角边为4,小正方形的面积为9.现向大正方形内随机撒一枚幸运小星星,则小星星落在小正方形内的概率为(  )
A.$\frac{8}{17}$B.$\frac{9}{17}$C.$\frac{10}{17}$D.$\frac{11}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|2x-1|+|2x+3|,g(x)=f(x)-|2x+3|-|x+1|.
(Ⅰ)若对任意的实数x,关于x的不等式f(x)≥a恒成立,求实数a的取值范围;
(Ⅱ)若存在x<-1,使g(x)≤g(m)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某人循一圆形跑道作等速跑步,每分钟经过的弧所对的圆心角是2$\frac{6}{7}$弧度,若此人于14分40秒内共跑了5280公尺,试求跑道的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=$\frac{sinx+1}{cosx+3}$的值域为[0,$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知AB=4,BC=2,CA=3,试求cos∠ACB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sin($\frac{π}{3}$+a)=$\frac{12}{13}$,a∈($\frac{π}{6}$,$\frac{2π}{3}$),则cosα的值为  (  )
A.$\frac{12\sqrt{3}-5}{13}$B.$\frac{12\sqrt{3}-5}{26}$C.$\frac{12\sqrt{3}+5}{13}$D.$\frac{12\sqrt{3}+5}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设点M在x轴上,若M到直线x-$\sqrt{3}$y+7=0和12x-5y+40=0的距离相等,则M点的坐标是(1,0)或(-$\frac{91}{37}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,a,b,c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC,则A的大小是120°.

查看答案和解析>>

同步练习册答案