精英家教网 > 高中数学 > 题目详情
20.某人循一圆形跑道作等速跑步,每分钟经过的弧所对的圆心角是2$\frac{6}{7}$弧度,若此人于14分40秒内共跑了5280公尺,试求跑道的半径.

分析 由题意可求得此人于14分40秒内经过的弧所对的圆心角,利用弧长公式即可得解.

解答 解:由题意可得:扇形的弧长为l=5280,圆心角大小为α=$\frac{20}{7}$×$\frac{44}{3}$(rad),半径为r
l=ra,故:r=$\frac{l}{α}$=$\frac{5280}{\frac{880}{21}}$=126.

点评 本题主要考查了弧长公式的应用,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在函数①y=x-1;②y=2x;③y=log2x;④y=tanx中,图象经过点(1,1)的函数的序号是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知棱长为3的正方体ABCD-A1B1C1D1中,长为2的线段MN的一端点M在DD1上运动,另一个端点N在底面ABCD上运动,动点E在线段CD1上,则MN中点P到线段AE距离的最小值为$\sqrt{3}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.三条直线l1:x+y+a=0,l2:x+ay+1=0,l3:ax+y+1=0能构成三角形,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的定义域:
(1)y=$\sqrt{sinx}$;
(2)y=2+$\frac{1}{cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=ax2-(a+1)x+b.
(1)若f(x)≥0的解集为{x|-$\frac{1}{5}$≤x≤1}求实数a,b的值;
(2)当a>0,b=1时,求关于x的不等式f(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,令Tn=$\frac{{S}_{1}+{S}_{2}+…+{S}_{n}}{n}$,称Tn为数列a1,a2,…,an的“理想数”,已知数列a1,a2,…,a500的“理想数”为2004,求数列15,a1,a2,…,a500的“理想数”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,已知AB=4,BC=2,CA=3,试求cos∠ACB,试求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC中,a、b、c分别是△ABC的三个内角A、B、C的对边,2b=c+2acosC.
(1)求A
(2)S△ABC=$\sqrt{3}$,a=$\sqrt{13}$,求b+c.

查看答案和解析>>

同步练习册答案