精英家教网 > 高中数学 > 题目详情
13.定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4)时,f(x)=(1og2015888)x-2,f(sin1)与f(cos1)的大小关系为(  )
A.f(sin1)<f(cos1)B.f(sin1)=f(cos1)C.f(sin1)>f(cos1)D.不确定

分析 根据已知分析出当x∈(0,1]时,函数f(x)为减函数,进而得到答案.

解答 解:∵1og2015888∈(0,1),
∴当x∈[3,4)时,f(x)=(1og2015888)x-2为增函数,
又∵函数f(x)满足f(x)=f(x+2),
即函数是以2为周期的周期函数,
∴当x∈[-1,0)时,函数f(x)为增函数,
又∵函数f(x)为偶函数,
∴当x∈(0,1]时,函数f(x)为减函数,
又∵sin1>cos1,
∴f(sin1)<f(cos1),
故选:A.

点评 本题考查的知识点是函数的单调性,函数的周期性,函数的奇偶性,对数的运算性质,三角函数求值,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知全集U=R,若A={y|y=2x,x≤0},则∁RA=(  )
A.(-∞,0]∪(1,+∞)B.(1,+∞)C.(-∞,0)∪[1,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数$z=\frac{1-3i}{1+i}$,则|z+1|=(  )
A.3B.2C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|3x+a|-a.
(1)若不等式f(x)≤6的解集为非空子集{x|-1≤x≤2},求实数a的取值范围;
(2)已知m+n=1(m,n>0),若$|{x-3}|-f(x)≤\frac{1}{m}+\frac{1}{n}(a>0)$对于任意实数x恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,以点(2,-3)为圆心且与直线2mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x-2)2+(y+3)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在区间[0,2]上任取两个实数a,b,则函数f(x)=x3+ax-b在区间[-1,1]上有且只有一个零点的概率是$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知在△ABC中,AC=AB=4,BC=6,若点M在△ABC的三边上移动,则线段AM的长度不小于$2\sqrt{2}$的概率为$\frac{{6-2\sqrt{2}}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.我国延迟退休年龄将借鉴国外经验,拟对不同群体采取差别措施,并以“小步慢走”的方式实施.现对某市工薪阶层关于“延迟退休年龄”的态度进行调查,随机抽取了50人,他们月收入的频数分布及对“延迟退休年龄”反对的人数如下表.
月收入(元)[1500,2500)[2500,3500)[3500,4500)[4500,5500)[5500,6500)[6500,7500)
频数510141164
反对人数4811621
(Ⅰ)由以上统计数据估算月收入高于5500的调查对象中,持反对态度的概率;
(Ⅱ)若对月收入在[1500,2500),[2500,3500)的被调查对象中各随机选取两人进行跟踪调查,记选中的4人中赞成“延迟退休年龄”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.实数a分别取什么数值时,复数z=$\frac{{a}^{2}-a-6}{a+3}$+(a2-2a-15)i(a∈R)对应的点Z.
(1)在复平面的实轴上方;
(2)在直线x+y+7=0上.

查看答案和解析>>

同步练习册答案