精英家教网 > 高中数学 > 题目详情
已知椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)经过点(0,1),离心率为
3
2
.直线l与椭圆C交于P、Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线OP、PQ、OQ的斜率依次成等比数列,求△OPQ面积的取值范围;
(Ⅲ)设点P关于x轴的对称点为P′(P′与Q不重合),当直线l过点(1,0)时,判断直线P′Q是否与x轴交于一定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)利用椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)经过点(0,1),离心率为
3
2
,求出a,b,即可求椭圆C的方程;
(Ⅱ)设直线l的方程为y=kx+m,代入椭圆方程,利用韦达定理,结合等比数列的性质,可得k2=
1
4
,求出点O到直线l的距离,|PQ|,即可求△OPQ面积的取值范围;
(Ⅲ)求出直线P'Q的方程,令y=0,可得-
4k
m
=4
,即可得出定点的坐标.
解答: 解:(Ⅰ)由题意,知
b=1
c
a
=
3
2
a2=b2+c2
解得a=2,b=1.
所以,椭圆C的方程为
x2
4
+y2=1
.…(4分)
(Ⅱ)由题意知,直线l的斜率k存在且不为0.设直线l的方程为y=kx+m(m≠0,m≠±1),P(x1,y1),Q(x2,y2).
y=kx+m
x2
4
+y2=1
消去y,得(1+4k2)x2+8kmx+4(m2-1)=0.
所以,△=64k2m2-16(1+4k2)(m2-1)=16(4k2-m2+1)>0,①
x1+x2=-
8km
1+4k2
x1x2=
4(m2-1)
1+4k2

因为直线OP、PQ、OQ的斜率依次成等比数列,
所以,
y1
x1
y2
x2
=
(kx1+m)(kx2+m)
x1x2
=
k2x1x2+km(x1+x2)+m2
x1x2
=k2

化简,得k2=
1
4
.代入①,解得0<m2<2.
因为点O到直线l的距离d=
|m|
1+k2
,且|PQ|=
1+k2
|x1-x2|

所以S△OPQ=
1
2
|PQ|•d=
1
2
|m|•
(x1+x2)2-4x1x2
=
m2(2-m2)

因为0<m2<2且m2≠1,所以0<m2(2-m2)=-(m2-1)2+1<1.
所以△OPQ面积的取值范围为(0,1).…(8分)
(Ⅲ)由(Ⅱ)知,当直线l过点(1,0)时,k+m=0.
由题意知P'(x1,-y1),直线P'Q的方程为y+y1=
y2+y1
x2-x1
(x-x1)

令y=0,得x=
y1x2+y2x1
y2+y1
=
(kx1+m)x2+(kx2+m)x1
(kx1+m)+(kx2+m)
=
2kx1x2+m(x1+x2)
k(x1+x2)+2m
=-
4k
m

由k+m=0,得-
4k
m
=4

即直线P'Q与x轴交于一定点(4,0).…(13分)
点评:本题考查椭圆的方程与性质,考查直线与椭圆的位置关系,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=log2
1-ax
x-1
-x为奇函数,a为常数.
(1)求a的值;
(2)判断并证明函数f(x)在x∈(1,+∞)时的单调性;
(3)若对于区间[2,3]上的每一个x值,不等式f(x)>2x+m恒成立,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)求值:sin
4
+cos
3
+tan
4

(Ⅱ)已知cosx=
3
5
,0<x<
π
2
,求sinx和tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在几何体ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACEF⊥平面ABCD,CF=1.
(Ⅰ)求证:平面FBC⊥平面ACFE;
(Ⅱ)若M为线段EF的中点,设平面MAB与平面FCB所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高二年纪在依次数学必修模块考试后随机抽取40名学生的成绩,按成绩共分为五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100),得到的频率直方图如图所示,同时规定成绩在90分以上的记为A级,成绩小于90分的记为B级.
(1)如果用分层抽样的方法从成绩为A和B的学生中共选出10人,求成绩为A和B的学生各选出几人.
(2)已知a是在(1)中选出的成绩为B的学生中的一个,若从选出的成绩为B的学生中选出2人参加某问卷调查,求a被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线F(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线F(x,y)=0的“自公切线”.下列方程:①x2-y2=1;②y=x2-2|x|;③y=sinx+cosx;④|x|+1=
2-y2
对应的曲线中不存在“自公切线”的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(π-α)-cos(π+α)=
2
3
,(
π
2
<α<π),求下列各式的值:
(Ⅰ)sinα-cosα;
(Ⅱ)sin3
π
2
-α)-cos3
π
2
+α).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,若集合A={x|3≤x≤10},B={x|x<2或x>7}.
(Ⅰ)求A∩B,A∪B,(∁UA)∩(∁UB);
(Ⅱ)若集合M={x|x+2a≥0},M∩A≠∅,求实数
3
8
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知质点按规律s=2t2+t(距离单位:米:时间单位:秒)运动,那么质点在3秒时的瞬时速度为
 
米/秒.

查看答案和解析>>

同步练习册答案