精英家教网 > 高中数学 > 题目详情
设f(x)=log2
1-ax
x-1
-x为奇函数,a为常数.
(1)求a的值;
(2)判断并证明函数f(x)在x∈(1,+∞)时的单调性;
(3)若对于区间[2,3]上的每一个x值,不等式f(x)>2x+m恒成立,求实数m取值范围.
考点:对数函数图象与性质的综合应用
专题:函数的性质及应用
分析:(1)由f(x)=log2
1-ax
x-1
-x为奇函数,满足f(-x)+f(x)=0,代入可得a的值;
(2)设1<x1<x2<+∞,结合对数运算性质,判断f(x1)-f(x2)的符号,进而可得函数f(x)在x∈(1,+∞)时的单调性;
(3)若对于区间[2,3]上的每一个x值,不等式f(x)>2x+m恒成立,m<[f(x)-2x]min,分析f(x)-2x的单调性并求出最值,可得实数m取值范围.
解答: 解:(1)由条件得:f(-x)+f(x)=0,
log2
1+ax
-x-1
+log2
1-ax
x-1
=0

化简得(a2-1)x2=0,
因此a2-1=0,a=±1,
当a=1时,
1-x
x-1
=-1<0
,不符合题意,
因此a=-1.        …(4分)
(也可以直接根据函数定义域关于坐标原点对称,得出结果,同样给分)
(2)判断函数f(x)在x∈(1,+∞)上为单调减函数;
证明如下:设1<x1<x2<+∞,
f(x1)-f(x2)=log2
x1+1
x1-1
-x1-log2
x2+1
x2-1
+x2=log2
x1+1
x1-1
x2-1
x2+1
+(x2-x1)

∵1<x1<x2<+∞,
∴x2-x1>0,x1±1>0,x2±1>0,
∵(x1+1)(x2-1)-(x1-1)(x2+1)=x1x2-x1+x2-1-x1x2-x1+x2+1=2(x2-x1)>0,
又∵(x1+1)(x2-1)>0,(x1-1)(x2+1)>0,
x1+1
x1-1
x2-1
x2+1
log2
x1+1
x1-1
x2-1
x2+1
>0

又x2-x1>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴函数f(x)在x∈(1,+∞)上为单调减函数;
(也可以利用导数证明,对照给分)          …(9分)
(3)不等式为m<f(x)-2x恒成立,
∴m<[f(x)-2x]min
∵f(x)在x∈[2,3]上单调递减,2x在x∈[2,3]上单调递增,
∴f(x)-2x在x∈[2,3]上单调递减,
当x=3时取得最小值为-10,
∴m∈(-∞,-10)…(14分)
点评:本题考查的知识点是对数函数的图象与性质,恒成立问题,奇函数,是函数图象和性质的综合应用,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用当型循环结构写求和S=22+42+62+…+1002的算法,并画出算法流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆与直线y=-3相切,并与定圆x2+y2=1相内切.
(Ⅰ)求动圆圆心P的轨迹C的方程.
(Ⅱ)过原点作斜率为1的直线交曲线C于p1(p1为第一象限点),又过P1作斜率为
1
2
的直线交曲线C于P2,再过P2作斜率为
1
4
的直线交曲线C于P3…如此继续,一般地,过Pn作斜率为
1
2n
的直线交曲线C于Pn+1,设Pn(xn,yn).
(i)令bn=x2n+1-x2n-1,求证:数列{bn}是等比数列;
(ii)数列{bn}的前n项和为Sn,试比较
3
4
Sn+1与
1
3n+10
大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数定义域.
(1)f(x)=2x+1  (2)f(x)=
2
x-1
  (3)f(x)=(x-2)0+1  (4)f(x)=
1
x2-5x+6

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,A={x|x<3},B={x|x>1},求:
(1)A∩B    (2)A∪B   (3)CRA,CRB  (4)(CRA)∩(CRB)  (5)CR(A∩B)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点到其右准线的距离为1,到右顶点的距离为
2
-1,圆O:x2+y2=a2,P为圆O上任意一点.
(1)求a,b;
(2)过点P作PH⊥x轴,垂足为H,线段PH与椭圆交点为M,求
MH
PH

(3)过点P作椭圆E的一条切线l,直线m是经过点P且与切线l垂直的直线,试问:直线m是否经过一定点?如果是,请求出此定点坐标;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(bx+c)lnx在x=
1
e
处取得极值,且在x=1处的切线的斜率为1.
(1)求b,c的值及f(x)的单调减区间;
(2)求f(x)在x∈[
e
2
,2e]时的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=
n(a1+an)
2

(1)求证:数列{an}为等差数列;
(2)若an=2n-1,数列{bn}满足:b1=3,bn-bn-1=an+1(n≥2),求数列{
1
bn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)经过点(0,1),离心率为
3
2
.直线l与椭圆C交于P、Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线OP、PQ、OQ的斜率依次成等比数列,求△OPQ面积的取值范围;
(Ⅲ)设点P关于x轴的对称点为P′(P′与Q不重合),当直线l过点(1,0)时,判断直线P′Q是否与x轴交于一定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

同步练习册答案