精英家教网 > 高中数学 > 题目详情
用当型循环结构写求和S=22+42+62+…+1002的算法,并画出算法流程图.
考点:设计程序框图解决实际问题
专题:作图题,算法和程序框图
分析:利用循环结构实现,循环体S=S+i^2,i=i+2.条件i<101.
解答: 解:算法如下:
第1步:S=0,i=2;
第2步:判断i<101,若是,执行下一步,否则输出S,程序结束.
第3步:S=S+i^2,i=i+2.
流程图如右图:
点评:本题考查了循环结构的设计方法,注意循环体与条件.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知5555=8k+m,(k,m∈N*),则整数m可以为(  )
A、1B、2C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出五个结论:①OM∥PD;②OM∥平面PCD;③OM∥平面PDA;④OM∥平面PBA,⑤OM∥平面PCB.
其中正确的个数有(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则
AD
BC
的取值范围是(  )
A、[1,2]
B、[0,1]
C、[0,2]
D、[-5,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数是偶函数的是(  )
A、y=(x+1)2
B、y=|x|•x
C、y=2x+2-x
D、y=
x
x2+sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,以椭圆C:
x2
4
+y2=1的左顶点T为圆心作圆T与椭圆C交于点M,N.
(Ⅰ)求
TM
TN
的最小值,并求此时圆T的方程;
(Ⅱ)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别于x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(1,-1),B(-1,-3).
(Ⅰ) 求过A、B两点的直线方程;
(Ⅱ) 求线段AB的垂直平分线l的直线方程;
(Ⅲ)若圆C经过A、B两点且圆心在直线x-y+1=0上,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1所示,在边长为12的正方形ADD1A1中,点B,C在线段AD上,且AB=3,BC=4,作BB1∥AA1,分别交A1D1,AD1于点B1,P,作CC1∥AA1,分别交A1D1,AD1于点C1,Q,将该正方形沿BB1,CC1折叠,使得DD1与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1
(1)求证:AB⊥平面BCC1B1
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为
3
3
,求|BE|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=log2
1-ax
x-1
-x为奇函数,a为常数.
(1)求a的值;
(2)判断并证明函数f(x)在x∈(1,+∞)时的单调性;
(3)若对于区间[2,3]上的每一个x值,不等式f(x)>2x+m恒成立,求实数m取值范围.

查看答案和解析>>

同步练习册答案