精英家教网 > 高中数学 > 题目详情
已知sin(π-α)-cos(π+α)=
2
3
,(
π
2
<α<π),求下列各式的值:
(Ⅰ)sinα-cosα;
(Ⅱ)sin3
π
2
-α)-cos3
π
2
+α).
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:(Ⅰ)利用已知条件通过诱导公式化简以及同角三角函数的基本关系式求解sinα-cosα;
(Ⅱ)化简sin3
π
2
-α)-cos3
π
2
+α)结合已知条件以及第一问的结论求解即可.
解答: 解:(Ⅰ)sin(π-α)-cos(π+α)=
2
3
,(
π
2
<α<π),
∴sinα+cosα=
2
3
,∴2sinαcosα=-
7
9

∴(sinα-cosα)2=(sinα+cosα)2-4sinαcosα=
2
9
+
14
9
=
16
9

π
2
<α<π,
∴sinα-cosα=
4
3

(Ⅱ)sin3
π
2
-α)-cos3
π
2
+α)
=cos3α+sin3α
=(sinα+cosα)(sin2α+cos2α-sinαcosα)=
2
3
(1+
7
18
)
=
25
2
54
点评:本题考查诱导公式的应用,三角函数的化简求值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(bx+c)lnx在x=
1
e
处取得极值,且在x=1处的切线的斜率为1.
(1)求b,c的值及f(x)的单调减区间;
(2)求f(x)在x∈[
e
2
,2e]时的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是半圆O的直径,C,D是弧AB的三等分点,M,N是线段AB的三等分点,若OA=6,则
MD
NC
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)经过点(0,1),离心率为
3
2
.直线l与椭圆C交于P、Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线OP、PQ、OQ的斜率依次成等比数列,求△OPQ面积的取值范围;
(Ⅲ)设点P关于x轴的对称点为P′(P′与Q不重合),当直线l过点(1,0)时,判断直线P′Q是否与x轴交于一定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABC-A1B1C1是正三棱柱,它的底面边长和侧棱长都是2,D为侧棱CC1的中点,E为A1B1的中点.
(1)求证:AB⊥DE;
(2)求直线A1B1到平面DAB的距离;
(3)求二面角A-BD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2,
(Ⅰ)求证:AC∥平面BEF;
(Ⅱ)求二面角A-FD-B的正切值;
(Ⅲ)求点D到平面BEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax
(1)若f(x)=2,求f(3x);
(2)y=f(x)的图象经过点(2,4),g(x)是f(x)反函数,求g(x)在[
1
2
,2
]区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2ax+a2-1
x2+1
,其中a∈R.
(1)当a=1时,求曲线y=f(x)在原点处的切线方程;
(2)求f(x)的单调区间;
(3)若f(x)在[0,2)上存在最大值和最小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB为⊙O的直径过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D,若AB=BC=2,则CD的长为
 

查看答案和解析>>

同步练习册答案