精英家教网 > 高中数学 > 题目详情
如图,已知ABC-A1B1C1是正三棱柱,它的底面边长和侧棱长都是2,D为侧棱CC1的中点,E为A1B1的中点.
(1)求证:AB⊥DE;
(2)求直线A1B1到平面DAB的距离;
(3)求二面角A-BD-C的正切值.
考点:与二面角有关的立体几何综合题,点、线、面间的距离计算
专题:综合题,空间位置关系与距离,空间角
分析:(1)证明A1B1⊥平面EDC1,A1B1∥AB,即可证明AB⊥DE;
(2)取AB中点为F,连结EF,DF,过E作直线EH⊥DF于H点,则EH⊥平面DAB,EH就是直线A1B1到平面DAB的距离;
(3)过A作AM⊥BC于M点,则AM⊥平面CDB,过M作MN⊥BD于N点,连结AN,则AN⊥BD,∠ANM即为所求二面角的平面角.
解答: (1)证明:连结C1E,则C1E⊥A1B1
又∵A1B1⊥C1C,∴A1B1⊥平面EDC1,∴A1B1⊥DE,
而A1B1∥AB,∴AB⊥DE.…(3分)
(2)解:取AB中点为F,连结EF,DF,则EF⊥AB,∴AB⊥DF.
过E作直线EH⊥DF于H点,则EH⊥平面DAB,∴EH就是直线A1B1到平面DAB的距离.
在矩形C1EFC中,∵AA1=AB=2,∴EF=2,C1E=
3
,DF=2,
∴在△DEF中,EH=
3
,…(7分)
故直线A1B1到平面DAB的距离为
3

(3)解:过A作AM⊥BC于M点,则AM⊥平面CDB,
过M作MN⊥BD于N点,连结AN,则AN⊥BD,∴∠ANM即为所求二面角的平面角,
在Rt△DCB中,BC=2,DC=1,M为BC中点,∴MN=
5
5

在Rt△AMN中,tan∠ANM=
AM
MN
=
15
…(12分)
点评:本题考查线面垂直,线面距离,考查面面角,综合性强,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,0<ω<2,|φ|<
π
2
)的一系列对应值如下表:
x-
π
6
 
π
3
 
6
 
3
 
11π
6
 
3
 
17π
6
y-2 0 2 0-2 0 2
(Ⅰ)根据表格提供的数据求函数y=f(x)的解析式;
(Ⅱ)若函数f(kx)(k<0)的最小正周期为
3
,且当x∈[0,
9
)时,方程f(kx)=m恰有两个不同的实数解,求实数m的取值范围,并求这两个实数解的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

随机抽取某中学高一年级学生的一次数学统测成绩得到一样本,其分组区间和频数:[50,60),2:[60,70),7:[70,80),10:[80,90),x[90,100],2,其频率分布直方图受到破坏,可见部分如图所示,据此解答如下问题:
(1)求样本的人数及x的值;
(2)从成绩不低于80分的样本中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高二年纪在依次数学必修模块考试后随机抽取40名学生的成绩,按成绩共分为五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100),得到的频率直方图如图所示,同时规定成绩在90分以上的记为A级,成绩小于90分的记为B级.
(1)如果用分层抽样的方法从成绩为A和B的学生中共选出10人,求成绩为A和B的学生各选出几人.
(2)已知a是在(1)中选出的成绩为B的学生中的一个,若从选出的成绩为B的学生中选出2人参加某问卷调查,求a被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1+a3是a2与a4的等差中项,且以a3-2,a3,a3+2为边长的三角形是直角三角形.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=2,且bn+1=bn+an+n,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(π-α)-cos(π+α)=
2
3
,(
π
2
<α<π),求下列各式的值:
(Ⅰ)sinα-cosα;
(Ⅱ)sin3
π
2
-α)-cos3
π
2
+α).

查看答案和解析>>

科目:高中数学 来源: 题型:

在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为4的正方形,AA1=2,点E、M分别为A1B,C1C的中点,过点A1、B、M三点的平面ABMN与棱C1D1相交于点N
(1)求证:EM∥平面A1B1C1D1
(2)求三棱锥A1-DEM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-ax,(a∈R).
(Ⅰ)判断函数f(x)的单调性;
(Ⅱ)当lnx<ax对于x∈(0,+∞)上恒成立时,求a的取值范围;
(Ⅲ)若k,n∈N*,且1≤k≤n,证明:
1
(1+
1
n
)
n
+
1
(1+
2
n
)
n
+…+
1
(1+
k
n
)
n
+…+
1
(1+
n
n
)
n
1
e-1
(1-
1
en
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率等于2,它的右准线过抛物线y2=4x的焦点,则双曲线的方程为
 

查看答案和解析>>

同步练习册答案