精英家教网 > 高中数学 > 题目详情
化简
sin(180°+α)cos(720°+α)
cos(-α-180°)sin(-180°-α)
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:利用诱导公式即可得出.
解答: 解:原式=
-sinαcosα
-cosαsinα
=1.
点评:本题考查了诱导公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径,AA1=AC=CB=2.E,F分别为AC,BC上的动点,且CE=BF.
(Ⅰ)证明:平面A1ACC1⊥平面B1BCC1
(Ⅱ)设CE=BF=x,当x为何值时,三棱锥C1-ECF的体积最大,最大值为多少?
(Ⅲ)若F为线段BC的中点,请问CC1上是否存在点M,使得B1M⊥C1O,若存在请求出C1M的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x-x2,求方程f(x)=0在区间[-1,0]上实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)用定义法证明函数f(x)=
1-x
x-
2
在(
2
,+∞)上是增函数;
(2)判断函数g(x)=
ex+e-x
ex-e-x
的奇偶性,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+2(a-1)x在区间(-∞,4]上是减函数,求实数a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知扇形的周长为40cm,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,BC=2,CD=
2
,BD⊥CD,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点
(1)求证:GH∥平面CDE
(2)求平面ECF与平面ABCD所成的二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+a+1)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx在区间[-1,1]上是减函数.
(Ⅰ)求实数a的值;
(Ⅱ)若g(x)≤λt-1在x∈[-1,1]上恒成立,求实数t的最大值;
(Ⅲ)若关于x的方程
lnx
f(x)
=x2-2ex+m有且只有一个实数根,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2},B={2,3},P={x|x⊆A},Q={x|x⊆B},则P∩Q=
 

查看答案和解析>>

同步练习册答案