精英家教网 > 高中数学 > 题目详情
如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径,AA1=AC=CB=2.E,F分别为AC,BC上的动点,且CE=BF.
(Ⅰ)证明:平面A1ACC1⊥平面B1BCC1
(Ⅱ)设CE=BF=x,当x为何值时,三棱锥C1-ECF的体积最大,最大值为多少?
(Ⅲ)若F为线段BC的中点,请问CC1上是否存在点M,使得B1M⊥C1O,若存在请求出C1M的长,若不存在,请说明理由.
考点:平面与平面垂直的判定,旋转体(圆柱、圆锥、圆台)
专题:空间位置关系与距离
分析:(Ⅰ)由已知得BB1⊥AC,BC⊥AC,从而AC⊥平面B1BCC1,由此能证明平面A1ACC1⊥平面B1BCC1
(Ⅱ)由CE=BF=x,得CF=2-x,从而VC1-ECF=
1
3
CC1S△ECF
=
1
3
•2•
1
2
x(2-x)
=
1
3
[-(x-1)2+1]
,由此求出x=1时,三棱锥C1-ECF的体积最大,最大值为
1
3

(Ⅲ)若F为线段BC的中点,则C1M=1=CF,由已知得FO∥AC,从而FO⊥平面CBB1C1,FO⊥B1M,由此能求出B1M⊥C1O.
解答: (Ⅰ)证明:∵BB1⊥平面ABC,AC?平面ABC,
∴BB1⊥AC,
∵AB是圆O的直径,∴BC⊥AC,
又BC∩BB1=B,
∴AC⊥平面B1BCC1
∵AC?平面B1BCC1,∴平面A1ACC1⊥平面B1BCC1
(Ⅱ)解:∵CE=BF=x,∴CF=2-x,
VC1-ECF=
1
3
CC1S△ECF
=
1
3
•2•
1
2
x(2-x)

=
1
3
(2x-x2)
=
1
3
[-(x-1)2+1]

∴x=1时,三棱锥C1-ECF的体积最大,最大值为
1
3

(Ⅲ)解:当C1M=1时,有B1M⊥C1O.
理由如下:
若F为线段BC的中点,则C1M=1=CF,
∴tanC1B1M=
1
2
=tan∠CC1F,∴C1F⊥B1M,
∵FO为△ABC的中位线,∴FO∥AC,
∴FO⊥平面CBB1C1,∴FO⊥B1M,
∵OF∩C1F=F,∴B1M⊥平面C1OF,且C1O?平面C1OF,
∴B1M⊥C1O.
点评:本题考查平面与平面垂直的证明,考查三棱锥体积最大值的求法,考查满足条件的点是否存在的判断与求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在各项均不为零的等差数列{an}中,若an2-an+1=an-1(n≥2,n∈N*),则S2014=(  )
A、2013B、2014
C、4026D、4028

查看答案和解析>>

科目:高中数学 来源: 题型:

已数列{an}满足a1=1,a2=3,an+2=(1+2|cos
2
|)an+|sin
2
|,n∈N*
(1)证明:数列{a2k}(k∈N*)为等比数列;
(2)求数列{an}的通项公式;
(3)bn=
1
a2n
+(-1)n-1•(
1
4
)a2n-1,{bn}的前n项和为Sn,求证Sn
23
30

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
4x2+4x-15
的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax-1
(Ⅰ)若a=1时,求f(x)在R上的值域;
(Ⅱ)求f(x)在[0,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在已知函数f(x)=Asin(ωx+φ),x∈R,其中A>0,ω>0,0<φ<
π
2
的图象与x轴的交点中,相邻两个交点之间的距离为
π
2
,且图象上的一个最低点为M(
3
,-2).
(1)求函数的解析式;
(2)说明函数f(x)是由函数y=sinx的图象依次经过哪些变换得到的;
(3)当x∈[
π
12
π
2
]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|3-2x≤0},B={x|x2-3x+2<0},U=R,求:
(1)A∩B   
(2)A∪B   
(3)(∁UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=kx-
k
x
-2lnx.
(Ⅰ)若函数f(x)的图象在点(1,f(1))处的切线方程为2x+5y-2=0,求f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,+∞)为增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简
sin(180°+α)cos(720°+α)
cos(-α-180°)sin(-180°-α)

查看答案和解析>>

同步练习册答案