精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3x-x2,求方程f(x)=0在区间[-1,0]上实根的个数.
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:根据方程和函数之间的关系,转化为函数f(x)=3x-x2的零点个数问题,利用函数零点的判断条件即可得到结论.
解答: 解:∵f(-1)=3-1-(-1)2=-
2
3
<0,
f(0)=30-02=1>0,
∴f(-1)•f(0)<0.
又函数f(x)在[-1,0]上的图象是连续曲线,
∴方程f(x)=0在[-1,0]内有实根.
又函数f(x)=3x-x2在[-1,0]上是增函数,
∴方程f(x)=0在[-1,0]上只有一个实数根.
点评:本题主要考查方程根的个数的判断,根据方程和函数之间的关系,转化为函数问题,利用函数零点的判断条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已数列{an}满足a1=1,a2=3,an+2=(1+2|cos
2
|)an+|sin
2
|,n∈N*
(1)证明:数列{a2k}(k∈N*)为等比数列;
(2)求数列{an}的通项公式;
(3)bn=
1
a2n
+(-1)n-1•(
1
4
)a2n-1,{bn}的前n项和为Sn,求证Sn
23
30

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|3-2x≤0},B={x|x2-3x+2<0},U=R,求:
(1)A∩B   
(2)A∪B   
(3)(∁UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=kx-
k
x
-2lnx.
(Ⅰ)若函数f(x)的图象在点(1,f(1))处的切线方程为2x+5y-2=0,求f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,+∞)为增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(4-2a)x+a2+1.
(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;
(2)设P=
1
2
[f(x1)+f(x2)],Q=f (
x1+x2
2
).试比较P与Q的大小;
(3)是否存在实数a∈[-8,0],使得函数f(x)在区间[-4,0]上的最小值为-7?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x-3≤0},集合B={x|[x-(m-2)][x-(m+2)]≤0,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=ax2+bx+
b
a
-1.
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意实数b,函数f(x)恒有两个相异的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简
sin(180°+α)cos(720°+α)
cos(-α-180°)sin(-180°-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(2x-
π
3
)(x∈R).
(1)用五点法画出函数f(x)在x∈[-
6
π
6
]上的大致图象;
(2)求函数f(x)(x∈R)的单调区间;
(3)说明怎样由函数y=sinx的图象得到函数f(x)(x∈R)的图象.

查看答案和解析>>

同步练习册答案