分析 通过两角和的余弦函数化简函数的表达式,利用两角差的正弦函数化为一个角的一个三角函数的形式,求出函数的值域.
解答 解:∵f(x)=sinx-cos(x+$\frac{π}{6}$)
=sinx-$\frac{\sqrt{3}}{2}$cosx+$\frac{1}{2}$sinx
=-$\frac{\sqrt{3}}{2}$cosx+$\frac{3}{2}$sinx
=$\sqrt{3}$sin(x-$\frac{π}{6}$).
x∈[0,π],∴x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$]
∴函数f(x)=sinx-cos(x+$\frac{π}{6}$)的值域为[-$\frac{\sqrt{3}}{2}$,$\sqrt{3}$].
故答案为:[-$\frac{\sqrt{3}}{2}$,$\sqrt{3}$].
点评 本题考查三角函数中的恒等变换应用,正弦函数的定义域和值域,考查计算能力,利用两角差的正弦函数化为一个角的一个三角函数的形式是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1),(0,0) | B. | {(-1,1),(0,0)} | C. | {x=-1或0,y=1或0} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{9}{5}$ | C. | 3 | D. | $-\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com