精英家教网 > 高中数学 > 题目详情
当a>0时,函数f(x)=(x2-ax)ex的图象大致是(  )
A、
B、
C、
D、
考点:函数的图象
专题:函数的性质及应用
分析:利用函数图象的取值,函数的零点,以及利用导数判断函数的图象.
解答: 解:由f(x)=0,解得x2-2ax=0,即x=0或x=2a,
∵a>0,∴函数f(x)有两个零点,∴A,C不正确.
设a=1,则f(x)=(x2-2x)ex
∴f'(x)=(x2-2)ex
由f'(x)=(x2-2)ex>0,解得x>
2
或x<-
2

由f'(x)=(x2-2)ex<0,解得,-
2
<x<
2

即x=-
2
是函数的一个极大值点,
∴D不成立,排除D.
故选B.
点评:本题主要考查函数图象的识别和判断,充分利用函数的性质,本题使用特殊值法是判断的关键,本题的难度比较大,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cosα+2sinα=0,其中
π
2
<α<π.
(Ⅰ)求
sinα-2cosα
2sinα-cosα
的值;
(Ⅱ)若sinβ=
3
5
π
2
<β<π,求cos﹙α+β﹚的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,抛物线y=-x2+9与x轴交于两点A,B,点C,D在抛物线上(点C在第一象限),CD∥AB.记|CD|=2x,梯形ABCD面积为S.
(1)求面积S以x为自变量的函数式;
(2)若
|CD|
|AB|
=k其中k为常数,且0<k<1,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PC⊥平面ABC,△ABC为正三角形,D,E,F分别是BC,PB,CA的中点.
(1)证明:PC∥平面DEF;
(2)证明:平面PBF⊥平面PAC;
(3)若PC=AB=2,求三棱锥P-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一次函数f(x),满足f(1)=0,f(3)=-2,
(1)求函数解析式,作出函数f(x)的图象;
(2)求函数f(x)在x∈[-1,2)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

偶函数f(x)在[0,+∞)上为增函数,若不等式f(ax-1)<f(2+x2)恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)若a∈R,则“a2>a”是“a>1”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在同一直角坐标系中,函数f(x)=m2x2+4mx和函数g(x)=x2+4x-3的图象与直线x=a分别交于M、N两点,若对于任意实数a,点M始终比点N高,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若y=f(x)是定义在[a,2a+1]上的奇函数,则a=
 

查看答案和解析>>

同步练习册答案