精英家教网 > 高中数学 > 题目详情
将1,2,3,…,9这9个正整数分别写在三张卡片上,要求每一张卡片上的任意两数之差都不在这张卡片上.现在第一张卡片上已经写有1和5,第二张卡片上写有2,第三张卡片上写有3,则6应该写在第
 
张卡片上;第三张卡片上的所有数组成的集合是
 
考点:计数原理的应用
专题:排列组合
分析:根据每一张卡片上的任意两数之差都不在这张卡片上,第一张卡片上已经写有1和5,第二张卡片上写有2,第三张卡片上写有3,即可得出结论.
解答: 解:由题意,∵要求每一张卡片上的任意两数之差都不在这张卡片上,第一张卡片上已经写有1和5,第二张卡片上写有2,第三张卡片上写有3,
∴4、9写在第三张卡片上,6、8在第二张卡片上,
故答案为:二;{3,4,9}.
点评:本题考查计数原理的运用,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆O:x2+y2=4(O为坐标原点),点P(1,0),现向圆O内随机投一点A,则点P到直线OA的距离小于
1
2
的概率为(  )
A、
2
3
B、
1
2
C、
1
3
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|(a>0),且不等式f(x)≥|x+1|的解集为{x|x≤
1
2
}.
(Ⅰ)求a的值;
(Ⅱ)设函数g(x)=f(x)+|2x+1|,若不等式|2m+n|+|m-n|≥|m|•g(x)对任意m,n∈R且m≠0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,0<φ<π)的图象如图所示,则f(
π
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-3,3]上随机取一个数x,使得|x-1|+|x+2|≤5成立的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线C的中心在原点,焦点在y轴上,一条渐近线方程为x-
3
y=0
,则双曲线C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,转盘被分成了4部分,其中∠AOB=∠COD=90°,则随意转动转盘,指针指向∠AOB和∠COD所在区域的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(2,1),B(1,-2),C(
3
5
,-
1
5
),动点P(a,b)满足0≤
OP
OA
≤2且0≤
OP
OB
≤2,则点P到点C的距离大于
1
4
的概率为(  )
A、1-
5
64
π
B、
5
64
π
C、1-
π
16
D、
π
16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为y2=2px(p>0),点R(1,2)在抛物线C上.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点Q(l,1)作直线交抛物线C于不同于R的两点A,B,若直线AR,BR分别交直线l:y=2x+2于M,N两点,求|MN|最小时直线AB的方程.

查看答案和解析>>

同步练习册答案