精英家教网 > 高中数学 > 题目详情
7.在平面直角坐标系xoy中,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,过焦点F作x轴的垂线交椭圆于A点,且|AF|=$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)若点A关于点O的对称点为B,直线BF交椭圆于点C,求∠BAC的大小.

分析 (Ⅰ)设F(c,0),A(c,y0),将A点坐标代入椭圆方程得${y_0}=±\frac{b^2}{a}$,从而求出$a=\sqrt{2}$,b=c=1,由此能求出椭圆方程.
(Ⅱ)设A点在第一象限,得$A({1,\frac{{\sqrt{2}}}{2}})$,$B({-1,-\frac{{\sqrt{2}}}{2}})$,从而直线BF方程为$y=\frac{{\sqrt{2}}}{4}({x-1})$,联立$\left\{{\begin{array}{l}{y=\frac{{\sqrt{2}}}{4}({x-1})}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$,得5x2-2x-7=0,由此结合已知条件能求出角的大小.

解答 解:(Ⅰ)由椭圆的对称性,不妨设F(c,0),A(c,y0),
将A点坐标代入椭圆方程:$\frac{c^2}{a^2}+\frac{{{y_0}^2}}{b^2}=1$,得${y_0}=±\frac{b^2}{a}$,
∴$|{AF}|=\frac{b^2}{a}=\frac{{\sqrt{2}}}{2}$,而$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,解得$a=\sqrt{2}$,b=c=1,
∴椭圆方程为$\frac{x^2}{2}+\frac{y^2}{1}=1$.…(5分)
(Ⅱ)由椭圆的对称性,不妨设A点在第一象限,可得$A({1,\frac{{\sqrt{2}}}{2}})$,∴$B({-1,-\frac{{\sqrt{2}}}{2}})$.
则直线BF方程为$y=\frac{{-\frac{{\sqrt{2}}}{2}}}{-2}({x-1})$,即$y=\frac{{\sqrt{2}}}{4}({x-1})$,
联立$\left\{{\begin{array}{l}{y=\frac{{\sqrt{2}}}{4}({x-1})}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$,消去y,可得5x2-2x-7=0,
设C(x1,y1),则${x_1}=\frac{7}{5}$,代入椭圆方程,得${y_1}=\frac{{\sqrt{2}}}{10}$,
∴$C({\frac{7}{5},\frac{{\sqrt{2}}}{10}})$,
∴$\overrightarrow{AB}•\overrightarrow{AC}=({-2,-\sqrt{2}})•({\frac{2}{5},-\frac{2}{5}\sqrt{2}})=0$,
∴$\overrightarrow{AB}⊥\overrightarrow{AC}$,∴∠BAC=90°.…(12分)

点评 本题考查椭圆方程的求法,考查角的大小的求法,是中档题,解题时要认真审题,注意椭圆的对称性、韦达定理、向量知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知A,B,C是△ABC的三个内角,且C=$\frac{π}{2}$,则$\frac{4}{si{n}^{2}A}$+$\frac{9}{si{n}^{2}B}$的最小值为25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=log2(2x+a)的定义域为(0,+∞).
(1)求a的值;
(2)若g(x)=log2(2x+1),且关于x的方程f(x)=m+g(x)在[1,2]上有解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系xOy中,M为不等式组$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$所表示的区域上一动点,已知点A(-1,2),则直线AM斜率的最小值为(  )
A.-$\frac{2}{3}$B.-2C.0D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆O:x2+y2=4,直线$l:x+\sqrt{2}y-6=0$,则圆O上任意一点A到直线l的距离小于$\sqrt{3}$的概率为(  )
A.$\frac{π}{6}$B.$\frac{1}{3}$C.$\frac{π}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=2${\;}^{2{x}^{2}-1}$的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②某只股票经历了l0个跌停(每次跌停,即下跌l0%)后需再经过10个涨停(每次涨停,即上涨10%)就可以回到原来的净值;
③某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部;数学平均分分别是a、b,则这两个级部的数学平均分为$\frac{na}{m}+\frac{mb}{n}$.
④某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组00l~016中随机抽到的学生编号是007.
其中真命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知F1,F2为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=l(a>b>0)的左、右焦点,B1,B2椭圆短轴的端点,四边形F1B1,F2B2为正方形且面积等于50.
(I)求椭圆方程;
(Ⅱ)过焦点Fl且倾斜角为30°的直线l交椭圆于M,N两点,求△F2MN内切圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x>0,y>0,$\frac{2}{x}+\frac{1}{y}$=1,若2x+y>m2+2m恒成立,则实数m的取值范围是(  )
A.(-∞,-1-$\sqrt{10}$)B.$(-1-\sqrt{10},-1+\sqrt{10})$C.$[{-1+\sqrt{10},+∞})$D.$[{-1-\sqrt{10},-1+\sqrt{10}}]$

查看答案和解析>>

同步练习册答案