分析 (Ⅰ)设F(c,0),A(c,y0),将A点坐标代入椭圆方程得${y_0}=±\frac{b^2}{a}$,从而求出$a=\sqrt{2}$,b=c=1,由此能求出椭圆方程.
(Ⅱ)设A点在第一象限,得$A({1,\frac{{\sqrt{2}}}{2}})$,$B({-1,-\frac{{\sqrt{2}}}{2}})$,从而直线BF方程为$y=\frac{{\sqrt{2}}}{4}({x-1})$,联立$\left\{{\begin{array}{l}{y=\frac{{\sqrt{2}}}{4}({x-1})}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$,得5x2-2x-7=0,由此结合已知条件能求出角的大小.
解答 解:(Ⅰ)由椭圆的对称性,不妨设F(c,0),A(c,y0),
将A点坐标代入椭圆方程:$\frac{c^2}{a^2}+\frac{{{y_0}^2}}{b^2}=1$,得${y_0}=±\frac{b^2}{a}$,
∴$|{AF}|=\frac{b^2}{a}=\frac{{\sqrt{2}}}{2}$,而$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,解得$a=\sqrt{2}$,b=c=1,
∴椭圆方程为$\frac{x^2}{2}+\frac{y^2}{1}=1$.…(5分)
(Ⅱ)由椭圆的对称性,不妨设A点在第一象限,可得$A({1,\frac{{\sqrt{2}}}{2}})$,∴$B({-1,-\frac{{\sqrt{2}}}{2}})$.
则直线BF方程为$y=\frac{{-\frac{{\sqrt{2}}}{2}}}{-2}({x-1})$,即$y=\frac{{\sqrt{2}}}{4}({x-1})$,
联立$\left\{{\begin{array}{l}{y=\frac{{\sqrt{2}}}{4}({x-1})}\\{\frac{x^2}{2}+{y^2}=1}\end{array}}\right.$,消去y,可得5x2-2x-7=0,
设C(x1,y1),则${x_1}=\frac{7}{5}$,代入椭圆方程,得${y_1}=\frac{{\sqrt{2}}}{10}$,
∴$C({\frac{7}{5},\frac{{\sqrt{2}}}{10}})$,
∴$\overrightarrow{AB}•\overrightarrow{AC}=({-2,-\sqrt{2}})•({\frac{2}{5},-\frac{2}{5}\sqrt{2}})=0$,
∴$\overrightarrow{AB}⊥\overrightarrow{AC}$,∴∠BAC=90°.…(12分)
点评 本题考查椭圆方程的求法,考查角的大小的求法,是中档题,解题时要认真审题,注意椭圆的对称性、韦达定理、向量知识的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{2}{3}$ | B. | -2 | C. | 0 | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{π}{12}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1-$\sqrt{10}$) | B. | $(-1-\sqrt{10},-1+\sqrt{10})$ | C. | $[{-1+\sqrt{10},+∞})$ | D. | $[{-1-\sqrt{10},-1+\sqrt{10}}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com