精英家教网 > 高中数学 > 题目详情
2.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)$\frac{f(b)-f(a)}{b-a}$,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3-x2+a是[0,a]上“双中值函数”,则实数a的取值范围是(  )
A.($\frac{1}{3}$,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{3}$,1)D.($\frac{1}{2}$,1)

分析 由新定义可知f′(x1)=f′(x2)=a2-a,即方程3x2-2x=a2-a在区间(0,a)有两个解,利用二次函数的性质可知实数a的取值范围

解答 解:由题意可知,
在区间[0,a]存在x1,x2(0<x1<x2<a),
满足f′(x1)=$\frac{f(a)-f(0)}{a-0}$=$\frac{{a}^{3}-{a}^{2}+a-a}{a}$=a2-a,
∵f(x)=x3-x2+a,
∴f′(x)=3x2-2x,
∴方程3x2-2x=a2-a在区间(0,a)有两个解.
令g(x)=3x2-2x-a2+a,(0<x<a),
∴$\left\{\begin{array}{l}{△=4-12(-{a}^{2}+a)>0}\\{g(0)=-{a}^{2}+a>0}\\{g(a)=2{a}^{2}-a>0}\\{a>0}\end{array}\right.$
解得$\frac{1}{2}$<a<1,
故选:D.

点评 本题主要考查了导数的几何意义,二次函数的性质与方程根的关系,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若变量x,y满足约束条件$\left\{\begin{array}{l}{4x+5y≥8}\\{1≤x≤3}\\{0≤y≤2}\end{array}\right.$,则z=3x+2y的最小值为(  )
A.4B.$\frac{23}{5}$C.6D.$\frac{31}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2sin(ωx+$\frac{π}{3}$)在[-$\frac{2}{3}$π,$\frac{2}{3}$π]上单调递增,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2$\sqrt{3}$sinxcosx-cos2x,x∈R
(1)求函数f(x)的单调增区间
(2)在△ABC中,角A、B、C所对边的长分别是a,b,c,若f(A)=2,C=$\frac{π}{4}$,c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等差数列{an}中,若a21+a1000+a2000=30,a1、a2013为方程x2-ax+20=0的两根,则a=(  )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(1)求y=lnf(x)的单调增区间;
(2)求f(x)的最小值以及相应的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(2sinx,-1),$\overrightarrow{n}$=(sinx-$\sqrt{3}$cosx,-2),函数f(x)=($\overrightarrow{m}$-$\overrightarrow{n}$)•$\overrightarrow{m}$+t.
(Ⅰ)若f(x)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上有三个零点,求t的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,a=4,△ABC的面积S=$\sqrt{3}$,若f(A)=2,且t=0,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在梯形ABCD中,∠ABC=$\frac{π}{2}$,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为(  )
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.

查看答案和解析>>

同步练习册答案