精英家教网 > 高中数学 > 题目详情

已知,且为第三象限角,求的值
(2)求值:

(1)
(2)

解析试题分析:解:(1),且为第三象限角,所以

(2)原式

考点:同角关系式以及二倍角公式的运用
点评:主要是考查了同角关系以及二倍角公式的计算,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,,)的图像与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为

(1)求函数的解析式;
(2)若锐角满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)写出函数的单调递减区间;
(2)设的最小值是,最大值是,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;(2)求的最大值和最小值;
(3)求的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知tanα=-.
(1)求α的其它三角函数的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,且满足
(1)求角的大小;
(2)现给出三个条件:①;②;③.试从中选出两个可以确定的条件,写出你的选项,并以此为依据求出的面积(只需写出一个选定方案即可).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数的图象的两相邻对称轴间的距离为.
(1)求的值;
(2)若,求的值;
(3)若,且有且仅有一个实根,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其图象过点
(1)求的值;
(2)将函数图象上各点向左平移个单位长度,得到函数的图象,求函数上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且函数的图象相邻两条对称轴之间的距离为.
(Ⅰ)求的对称中心;
(Ⅱ)当时,求的单调增区间.

查看答案和解析>>

同步练习册答案