精英家教网 > 高中数学 > 题目详情
12.如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的余弦值.

分析 (I)根据菱形的性质得出BE⊥AB,由PA⊥平面ABCD得出PA⊥BE,故而BE⊥平面PAB,于是结论得证;
(II)设AC,BD交点为O,以O为原点建立坐标系,求出两个平面的法向量$\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}$,则|cos<$\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}$>|即为所求.

解答 (I)证明:连接BD,
∵四边形ABCD是菱形,∠BCD=60°,
∴△BCD是等边三角形,
∵E是CD的中点,∴BE⊥CD,
∵CD∥AB,∴BE⊥AB.
∵PA⊥平面ABCD,BE?平面ABCD,
∴PA⊥BE,又PA?平面PAB,AB?平面PAB,PA∩AB=A,
∴BE⊥平面PAB,又BE?平面PBE,
∴平面PBE⊥平面PAB.
(II)设AC∩BD=O,以OB所在直线为x轴,以OC所在直线为y轴,
以平面ABCD过O的垂线为z轴建立如图所示的空间直角坐标系,
则A(0,-$\frac{\sqrt{3}}{2}$,0),B($\frac{1}{2}$,0,0),C(0,$\frac{\sqrt{3}}{2}$,0),D(-$\frac{1}{2}$,0,0),
P(0,-$\frac{\sqrt{3}}{2}$,2),E(-$\frac{1}{4}$,$\frac{\sqrt{3}}{4}$,0),
∴$\overrightarrow{AP}$=(0,0,2),$\overrightarrow{AD}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,0),$\overrightarrow{BE}$=(-$\frac{3}{4}$,$\frac{\sqrt{3}}{4}$,0),$\overrightarrow{BP}$=(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$,2).
设平面PAD的法向量为$\overrightarrow{{n}_{1}}$=(x1,y1,z1),平面PBE的法向量为$\overrightarrow{{n}_{2}}$=(x2,y2,z2),
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{AP}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{AD}=0}\end{array}\right.$,$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{BE}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{BP}=0}\end{array}\right.$.
∴∴$\left\{\begin{array}{l}{2{z}_{1}=0}\\{-\frac{1}{2}{x}_{1}+\frac{\sqrt{3}}{2}{y}_{1}=0}\end{array}\right.$,$\left\{\begin{array}{l}{-\frac{3}{4}{x}_{2}+\frac{\sqrt{3}}{4}{y}_{2}=0}\\{-\frac{1}{2}{x}_{2}-\frac{\sqrt{3}}{2}{y}_{2}+2{z}_{2}=0}\end{array}\right.$.
令x1=$\sqrt{3}$得$\overrightarrow{{n}_{1}}$=($\sqrt{3}$,1,0),令x2=1得$\overrightarrow{{n}_{2}}$=(1,$\sqrt{3}$,1).
∴cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$=$\frac{2\sqrt{3}}{2•\sqrt{5}}$=$\frac{\sqrt{15}}{5}$.
∵平面PAD和平面PBE所成二面角为锐角,
∴平面PAD和平面PBE所成二面角的余弦值为$\frac{\sqrt{15}}{5}$.

点评 本题考查了面面垂直的判定,空间角的计算与空间向量的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
x23456
y2238556570
若由资料可知y对x呈线性相关关系,试求:
(1)线性回归方程;
(2)估计使用年限为10年时,维修费用是多少?
参考公式:回归直线方程$\widehat{y}$=bx+a,b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.甲、乙两人射击,中靶的概率分别为0.8,0.9,若两人同时独立射击,他们都击中靶的概率为0.72.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.圆的参数方程为$\left\{\begin{array}{l}x=3sinθ+4cosθ\\ y=4sinθ-3cosθ\end{array}$(θ为参数),则此圆的半径为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\vec a$=(1,2),$\vec b$=(2,1),$\vec u$=2$\vec a$-$\vec b$,$\vec v$=$\vec a$+m$\vec b$,若$\vec u∥\vec v$,则m的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$-\frac{1}{2}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=tan(x+$\frac{π}{3}$).
(1)求f(x)的定义域;
(2)求f(x)单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,已知tan($\frac{A+B}{2}$)=sinC,给出以下论断:
①$\frac{tanA}{tanB}$=1;
②1<sinA+sinB≤$\sqrt{2}$;
③sin2A+cos2B=1;
④cos2A+cos2B=sin2C.
其中正确的是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若复数z1=4+3i,z2=cosθ+isinθ,且z1•z2是实数,则cos2θ=$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知α,b∈R,集合A={a,$\frac{b}{a}$,1},B={a2,a+b,0},若A=B,则α+b=-1.

查看答案和解析>>

同步练习册答案