精英家教网 > 高中数学 > 题目详情
2.已知α,b∈R,集合A={a,$\frac{b}{a}$,1},B={a2,a+b,0},若A=B,则α+b=-1.

分析 根据集合元素的特征和集合相等,求出a,b的值即可.

解答 解:∵{a,$\frac{b}{a}$,1}={0,a+b,a2},
∴b=0,a2=1,
a=1,b=0时,不合题意,
∴a=-1,
∴a+b=-1,
故答案为:-1.

点评 本题考查了集合相等的条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:
(1)4x${\;}^{\frac{1}{4}}$(-3x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)÷(6x${\;}^{-\frac{1}{2}}$y${\;}^{-\frac{2}{3}}$);
(2)$\frac{1}{2}$log312-log32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.k∈R,曲线$\frac{{x}^{2}}{16-k}$-$\frac{{y}^{2}}{k}$=1表示双曲线,则k的取值范围为(0,16).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.x>y>0,求x+2+$\frac{1}{(x-y)y}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,b=5,B=$\frac{π}{4}$,sinA=$\frac{2\sqrt{5}}{5}$,则a的值是(  )
A.10$\sqrt{2}$B.2$\sqrt{10}$C.$\sqrt{10}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.下面程序的功能是输出1~100间的所有偶数.程序:
(1)试将上面的程序补充完整;
(2)改写为WHILE型循环语句.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的顶点A(1,0,0),B(0,2,0),C(0,0,1),CD是AB边上的高,则点D的坐标为$(\frac{4}{5},\frac{2}{5},0)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出以下四个命题:
①若集合A={x,y},B={0,x2},A=B.则x=1,y=0;
②若函数f(x)的定义域为(-1,1),则函数f(2x+1)的定义域为(-1,0);
③f(x)=$\frac{|x|}{x}$与g(x)=$[\begin{array}{l}{1(x≥0)}\\{-1(x<0)}\end{array}]$表示同一函数.
④若f(x+y)=f(x)f(y),且f(1)=2,$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$=2016
其中正确的命题有①②④(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案