精英家教网 > 高中数学 > 题目详情
6.如图,已知PA是圆O的切线,切点为A,PO交圆O于点B,圆O的半径为2,PB=3,则PA的长为$\sqrt{21}$.

分析 由题意,利用切割线定理可得结论.

解答 解:由题意,利用切割线定理可得PA2=3×(3+2+2)=21,
∴PA=$\sqrt{21}$.
故答案为:$\sqrt{21}$.

点评 此题主要考查圆的切线的性质定理的运用,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.△ABC中,角A,B,C的对边分别为a,b,c,已知点(a,b)在直线x(sinA-sinB)+ysinB=csinC上
(1)求角C的大小;
(2)若△ABC为锐角三角形且满足$\frac{m}{tanC}$=$\frac{1}{tanA}$+$\frac{1}{tanB}$,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知10支晶体管中有5个次品,现从中不放回的连续依次取出两支,则两次取出的晶体管都是次品的概率是$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设曲线y=x2及直线y=1所围成的封闭图形区域D,不等式组$\left\{\begin{array}{l}{-1≤x≤1}\\{0≤y≤1}\end{array}\right.$所确定的区域为E,在区域E内随机取一点,该点恰好在区域D内的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以原点O为圆心的圆与直线x-$\sqrt{3}$y-4=0相切.
(Ⅰ)求圆O的方程;
(Ⅱ)若已知点P(3,2),过点P作圆O的切线,求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设双曲线的一个焦点为F,虚轴的一个端点为B,焦点F到一条渐近线的距离为d,若|FB|≥$\sqrt{3}$d,则双曲线离心率的取值范围是(  )
A.(1,$\sqrt{2}$]B.[$\sqrt{2}$,+∞)C.(1,3]D.[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设a1,a2,…an为实数,证明:a1c1+a2c2+…ancn≤a12+a22+…+an2,其中c1,c2,…,cn是a1,a2,…,an的任一排列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.10个人排成前后两排,每排5人,则不同排法的种数是${A}_{10}^{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=f(x)在定义域(-$\frac{3}{2}$,3)内可导,其图象如图所示,记y=f(x)的导函数为y′=f′(x),则不等式f′(x)≤0的解集为(  )
A.[-$\frac{1}{3}$,1]∪[2,3)B.[-1,$\frac{1}{2}$]∪[$\frac{4}{3}$,$\frac{8}{3}$]C.[-$\frac{3}{2}$,$\frac{1}{2}$]∪[1,2]D.[-$\frac{3}{2}$,-$\frac{1}{3}$]∪[$\frac{1}{2}$,$\frac{4}{3}$]

查看答案和解析>>

同步练习册答案