精英家教网 > 高中数学 > 题目详情
17.已知数列{an}中的前n项和为Sn=$\frac{{n}^{2}+n}{2}$,又bn=$\frac{1}{{S}_{n}}$.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

分析 (1)由n≥2时,an=Sn-Sn-1=$\frac{{n}^{2}+n}{2}$-$\frac{(n-1)^{2}+(n-1)}{2}$=n,当n=1时,也适合上式,求得数列{an}的通项公式;
(2)由bn=$\frac{1}{{S}_{n}}$=$\frac{2}{{n}^{2}+n}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),利用“裂项法”即可求得数列{bn}的前n项和Tn

解答 解:(1)当n=1,a1=S1=1,
当n≥2时,an=Sn-Sn-1=$\frac{{n}^{2}+n}{2}$-$\frac{(n-1)^{2}+(n-1)}{2}$=n,
当n=1时,也适合上式,
∴数列{an}的通项公式为an=n,
(2)bn=$\frac{1}{{S}_{n}}$=$\frac{2}{{n}^{2}+n}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
则数列{bn}的前n项和为:Tn=b1+b2+b3+…+bn
=2[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)],
=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$),
=2(1-$\frac{1}{n+1}$),
=$\frac{2n}{n+1}$,
数列{bn}的前n项和Tn=$\frac{2n}{n+1}$.

点评 本题考查数列的通项公式,考查利用“裂项法”求数列的前n项和公式的求法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若复数满足(3+i)•z=|1+3i|,则z的虚部为(  )
A.$\frac{{\sqrt{10}}}{10}$B.$-\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{10}i$D.$-\frac{{\sqrt{10}}}{10}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.圆(x-3)2+(y+2)2=1与圆x2+y2-14x-2y+14=0的位置关系是(  )
A.外切B.内切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若离散型随机变量X的分布列为
X01
P6a2-a3-7a
则常数a的值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{3}$或$\frac{1}{3}$D.1或$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知α∈($\frac{3}{2}$π,2π),且cos(π+α)=-$\frac{1}{2}$,求tan(2π-α),sin(5π+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.△ABC中,CA=1,CB=2,∠C=60°,则AB=$\sqrt{3}$,∠A=90°,S△ABC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a,b∈R,且a+b=4,则3a+3b的最小值为(  )
A.6B.18C.27D.81

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知sin(2x+$\frac{π}{5}$)=$\frac{{\sqrt{3}}}{3}$,则sin($\frac{4π}{5}$-2x)+sin2($\frac{3π}{10}$-2x)=$\frac{2+\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,已知AB=2,BC=4,∠B的平分线BD=$\sqrt{6}$,则AC边上的中线BE=$\frac{\sqrt{31}}{2}$.

查看答案和解析>>

同步练习册答案