精英家教网 > 高中数学 > 题目详情
设函数f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.
(Ⅰ)求函数f(x),g(x)的解析式;
(Ⅱ)求函数f(x)在[t,t+1](t>-3)上的最小值;
(Ⅲ)若对?x≥-2,kf(x)≥g(x)恒成立,求实数k的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:综合题
分析:(Ⅰ)求导函数,利用两函数在x=0处有相同的切线,可得2a=b,f(0)=a=g(0)=2,即可求函数f(x),g(x)的解析式;
(Ⅱ)求导函数,确定函数的单调性,再分类讨论,即可求出函数f(x)在[t,t+1](t>-3)上的最小值;
(Ⅲ)令F(x)=kf(x)-g(x)=2kex(x+1)-x2-4x-2,对?x≥-2,kf(x)≥g(x)恒成立,可得当x≥-2,F(x)min≥0,即可求实数k的取值范围.
解答: 解:(Ⅰ) f'(x)=aex(x+2),g'(x)=2x+b----------------------(1分)
由题意,两函数在x=0处有相同的切线.
∴f'(0)=2a,g'(0)=b,
∴2a=b,f(0)=a=g(0)=2,∴a=2,b=4,
∴f(x)=2ex(x+1),g(x)=x2+4x+2.----------------------(3分)
(Ⅱ) f'(x)=2ex(x+2),由f'(x)>0得x>-2,由f'(x)<0得x<-2,
∴f(x)在(-2,+∞)单调递增,在(-∞,-2)单调递减.----------------------(4分)
∵t>-3,∴t+1>-2
①当-3<t<-2时,f(x)在[t,-2]单调递减,[-2,t+1]单调递增,
f(x)min=f(-2)=-2e-2.----------------------(5分)
②当t≥-2时,f(x)在[t,t+1]单调递增,∴f(x)min=f(t)=2et(t+1)
f(x)=
-2e-2 
&2et(t+1)  (t≥-2)
----------------------(6分)
(Ⅲ)令F(x)=kf(x)-g(x)=2kex(x+1)-x2-4x-2,
由题意当x≥-2,F(x)min≥0----------------------(7分)
∵?x≥-2,kf(x)≥g(x)恒成立,∴F(0)=2k-2≥0,∴k≥1----------------------(8分)
F'(x)=2kex(x+1)+2kex-2x-4=2(x+2)(kex-1),----------------------(9分)
∵x≥-2,由F'(x)>0得ex
1
k
,∴x>ln
1
k
;由F'(x)<0得x<ln
1
k

∴F(x)在(-∞,ln
1
k
]
单调递减,在[ln
1
k
,+∞)
单调递增----------------------(10分)
①当ln
1
k
<-2
,即k>e2时,F(x)在[-2,+∞)单调递增,F(x)min=F(-2)=-2ke-2+2=
2
e2
(e2-k)<0
,不满足F(x)min≥0.----------------(11分)
②当ln
1
k
=-2
,即k=e2时,由①知,F(x)min=F(-2)=
2
e2
(e2-k)=0
,满足F(x)min≥0.-------(12分)
③当ln
1
k
>-2
,即1≤k<e2时,F(x)在[-2,ln
1
k
]
单调递减,在[ln
1
k
,+∞)
单调递增F(x)min=F(ln
1
k
)=lnk(2-lnk)>0
,满足F(x)min≥0.
综上所述,满足题意的k的取值范围为[1,e2].----------------------(13分)
点评:本题考查导数的几何意义,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE(A′∉平面ABC)是△ADE绕DE旋转过程中的一个图形,有下列命题:
①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱锥A′-DEF的体积最大值为
1
64
a3
④动点A′在平面ABC上的射影在线段AF上;
⑤二面角A′-DE-F大小的范围是[0,
π
2
].
其中正确的命题是
 
(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sinx的图象上所有的点向右平行移动
π
3
个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)得到函数f(x)的图象,则f(-π)等于(  )
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β为两个平面,且α⊥β,l为直线.则l⊥β是l∥α的(  )
A、必要而不充分条件
B、充分而不必要条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设i是虚数单位,则复数z=(
1+i
1-i
)2014
=(  )
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4
2
x的焦点为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点,且椭圆的长轴长为4,M、N是椭圆上的动点
(1)求椭圆标准方程;
(2)设动点P满足:
OP
=
OM
+2
ON
,直线OM与ON的斜率之积为-
1
2
,证明:存在定点F1,F2,使得|PF1|+|PF2|为定值,并求出F1,F2的坐标;
(3)若M在第一象限,且点M,N关于原点对称,MA垂直于x轴于点A,连接NA 并延长交椭圆于点B,记直线MN,MB的斜率分别为kMN,kMB,证明:kMN•kMB+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是数列{an}的前n项和,对任意n∈N*都有2Sn=(kn+b)(a1+an)+p成立,(其中k、b、p是常数).
(1)当k=0,b=3,p=-4时,求Sn
(2)当k=1,b=0,p=0时,
①若a3=3,a9=15,求数列{an}的通项公式;
②设数列{an}中任意(不同)两项之和仍是该数列中的一项,则称该数列是“Ω数列”.如果a2-a1=2,试问:是否存在数列{an}为“Ω数列”,使得对任意n∈N*,都有Sn≠0,且
1
12
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
11
18
.若存在,求数列{an}的首项a1的所有取值构成的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
使用年限x 2 3 4 5 6
维修费用y 2.2 3.8 5.5 6.5 7.0
若由资料知y对x呈线性相关关系.
(1)请画出上表数据的散点图;
(2)根据最小二乘法求出线性回归方程
y
=
b
x+
a
的回归系数
b
=1.23
;求出回归方程.
(3)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若a1=-11,a2=-9,则当Sn取最小值是,n=
 

查看答案和解析>>

同步练习册答案