分析 Sn=(-1)nan+$\frac{1}{{2}^{n}}$,可得:S2k-1=-a2k-1+$\frac{1}{{2}^{2k-1}}$,S2k=${a}_{2k}+\frac{1}{{2}^{2k}}$,S2k+1=-a2k+1+$\frac{1}{{2}^{2k+1}}$.可得a2k-1=$\frac{1}{{2}^{2k}}$,同理可得:a2k=$-\frac{1}{{2}^{2k}}$.于是可得S2k-1+S2k.
解答 解:∵Sn=(-1)nan+$\frac{1}{{2}^{n}}$,
∴S2k-1=-a2k-1+$\frac{1}{{2}^{2k-1}}$,S2k=${a}_{2k}+\frac{1}{{2}^{2k}}$,S2k+1=-a2k+1+$\frac{1}{{2}^{2k+1}}$.
∴a2k=a2k+a2k-1-$\frac{1}{{2}^{2k}}$,
∴a2k-1=$\frac{1}{{2}^{2k}}$,
同理可得:a2k=$-\frac{1}{{2}^{2k}}$.
∴S2k-1+S2k=-$\frac{1}{{2}^{2k}}$+$\frac{1}{{2}^{2k-1}}$-$\frac{1}{{2}^{2k}}$+$\frac{1}{{2}^{2k}}$=$\frac{1}{{2}^{2k}}$=$\frac{1}{{4}^{k}}$,
∴T2014=(T1+T2)+(T3+T4)+…+(T2013+T2014)=$\frac{\frac{1}{4}(1-\frac{1}{{4}^{1007}})}{1-\frac{1}{4}}$=$\frac{1}{3}(1-\frac{1}{{4}^{1007}})$.
故答案为:$\frac{1}{3}(1-\frac{1}{{4}^{1007}})$.
点评 本题考查了递推关系式,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 井号I | 1 | 2 | 3 | 4 | 5 | 6 |
| 坐标(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
| 钻探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
| 出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| X | 0~6 | 7 | 8 | 9 | 10 |
| P | 0 | 0.2 | 0.3 | 0.3 | 0.2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com