精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3x2+2x+1,若
1
-1
f(x)dx=2f(a)(a>0).则a=
 
考点:定积分
专题:函数的性质及应用
分析:根据定积分的计算法则,计算即可,再代入值构造方程,解得a的值
解答: 解:
1
-1
f(x)dx=
1
-1
(3x2+2x+1)dx=(x3+x2+x)|
 
1
-1
=4,
∴2f(a)=2(3a2+2a+1)=4
解得a=
1
3
,a=-1(舍去),
故答案为:
1
3
点评:本题主要考查了定积分的计算和方程的解法,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一艘船每小时的燃料费与船的速度的平方成正比,如果此船速度是10km/h,那么每小时的燃料费是80元.已知船航行时其他费用为500元/时,在100km航程中,航速多少时船行驶总费用最少?此时总费用多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cosx•ln|x|的部分图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x2+ax+b<0的解集为A∩B,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

1
0
e2x
dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为4x-3y=0,则双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等轴双曲线的一个焦点是F1(-6,0),则它的标准方程是(  )
A、
y2
18
-
x2
18
=1
B、
x2
18
-
y2
18
=1
C、
x2
8
-
y2
8
=1
D、
y2
8
-
x2
8
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC中,角A,B,C所对的边分别为a,b,c,若a=4,A=
π
4
,B=
π
3
,则△ABC的面积S=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意x∈R都满足f(x+2)=f(x)+2,且当x∈[-1,1]时,f(x)=
2x
|x|+1
;又 g(x)=x2-(4k-2)x+k2+558(k为常数,且k∈Z).
(1)作出f(x)在区间[-1,1]上的图象,并求x∈[1,3]时f(x)的解析式和值域;
(2)对于实数集合M,若{y|y=f(x),x∈M}={y|2k-1≤y≤2k+1},试求出集合M(用含k的代数式表示);
(3)若对任意 x1∈[2k-1,2k+1],总存在x2∈[2k-1,2k+1],使得 g(x2)≥f(x1)成立,试求出满足条件的所有k值的和.

查看答案和解析>>

同步练习册答案