精英家教网 > 高中数学 > 题目详情
9.若函数f(x)=loga(x-1)+m(a>0,且a≠1)恒过定点(n,2),则m+n的值为4.

分析 由条件利用loga(n-1)+m=2 为定值,可得n-1=1,求得n的值,可得m的值,从而求得m+n的值.

解答 解:∵函数f(x)=loga(x-1)+m(a>0,且a≠1)的图象经过定点A(n,2),
可得loga(n-1)+m=2为定值,可得n-1=1,n=2,故m=2,m+n=4,
故答案为:4.

点评 本题主要考查函数的图象经过定点问题,对数函数的图象过定点问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.化简$\frac{sin(θ-5π)}{cos(3π-θ)}$•$\frac{cos(\frac{5π}{2}+θ)}{sin(θ-3π)}$•$\frac{cos(8π-θ)}{sin(-θ-4π)}$+sin(-θ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,若a1=25,S9=S17,则该数列的前(  )项之和最大.
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合S={x|x≤-1或x≥2},P={x|a≤x≤a+3},若S∪P=R,则实数a的取值集合为(  )
A.{a|a≤0}B.{a|0≤a≤1}C.{a|a=1}D.{a|a=-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不论k为何值,直线(2k-1)x-(k-2)y-(k+4)=0恒过的一个定点是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的前n项和为Sn,且a1=1,S3=0.
(1)求{an}的通项公式;
(2){bn}为等比数列,且b1=2a1,b2=a6,求{bn}的前n项和Bn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合M={x|x≥2},集合N={x|x>-1},则 M∪N=(  )
A.{x|x≥2}B.{x|x>-1}C.{x|x<2}D.{x|x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$|\overrightarrow a|=\sqrt{2},|\overrightarrow b|=2$且$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$,则$\overrightarrow a$与$\overrightarrow b$的夹角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)求z=2x+y的最大值,使式中的x、y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1.\end{array}\right.$
(2)求z=2x+y的最大值,使式中的x、y满足约束条件$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1.

查看答案和解析>>

同步练习册答案