分析 (1)设{an}的公差为d,运用等差数列的求和公式,可得d=-1,再由等差数列的通项公式即可得到所求;
(2)由等比数列的通项公式可得公比为-2,再由等比数列的求和公式,可得所求和.
解答 解:(1)设{an}的公差为d,
由a1=1,S3=0,
可得3a1+3d=0,
解得d=-1,
从而an=2-n;
(2)b1=2a1=2,b2=a6=-4,
可得公比$q=\frac{b_2}{b_1}=-2$,
∴${B_n}=\frac{{{b_1}(1-{q^n})}}{1-q}=\frac{{2[1-{{(-2)}^n}]}}{3}$.
点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com