精英家教网 > 高中数学 > 题目详情
4.不论k为何值,直线(2k-1)x-(k-2)y-(k+4)=0恒过的一个定点是(2,3).

分析 把所给的直线分离参数,再令参数的系数等于零,即可求得定点的坐标.

解答 解:直线(2k-1)x-(k-2)y-(k+4)=0,即 k(2x-y-1)+(-x+2y-4)=0,
一定经过直线2x-y-1=0 和直线-x+2y-4=0的交点(2,3),
故答案为:(2,3).

点评 本题主要考查直线过定点问题,利用了m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{\frac{1}{2}{x}^{2},x>1}\end{array}\right.$,求${∫}_{0}^{2}$f(x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=3sinx-4cosx的最大值为5,最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设F是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点,过F的直线与椭圆C交于A,B两点,分别过A,B作椭圆C的切线并相交于点P,线段OP(O为坐标原点)交椭圆C于点Q,满足$\overrightarrow{OQ}=2\overrightarrow{QP}$,且$\overrightarrow{FQ}•\overrightarrow{OF}=0$,则椭圆C的离心率为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若直线l的斜率为$-\frac{{\sqrt{3}}}{3}$,则直线l的倾斜角为(  )
A.115°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=loga(x-1)+m(a>0,且a≠1)恒过定点(n,2),则m+n的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设全集U={1,2,3,4,5,6},集合M={1,4},N={1,3,5},则N∩(∁UM)=(  )
A.{1}B.{3,5}C.{1,3,4,5}D.{1,2,3,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别是F1,F2,如果椭圆C上的动点到点F1的距离的最大值是$\sqrt{3}+\sqrt{2}$,短轴一个端点到点F2的距离为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设过点F2且斜率为1的直线l与椭圆C交于A、B两点,求△ABF1的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法正确的是(  )
A.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题
B.已知x∈R,则“x>1”是“x>2”的充分不必要条件
C.命题“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x≤0”
D.命题“若am2<bm2,则a<b”的逆命题是真命题

查看答案和解析>>

同步练习册答案