精英家教网 > 高中数学 > 题目详情
8.(x2-2x+1)4的展开式中x7的系数是-8.

分析 先求出二项式展开式的通项公式,再令x的幂指数等于07,求得r的值,即可求得展开式中的x7的系数.

解答 解:(x2-2x+1)4 =(x-1)8的展开式的通项公式为 Tr+1=${C}_{8}^{r}$•(-1)r•x8-r
令8-r=7,求得r=1,可得展开式中x7的系数是-8,
故答案为:-8.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.若三点A(3,1)、B(-2,k)、C(8,1)能构成三角形,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设F1、F2是双曲线$\frac{{x}^{2}}{4a}$-$\frac{{y}^{2}}{a}$=1(a>0)的两个焦点,点P在双曲线上,且$\overrightarrow{PF1}$•$\overrightarrow{PF2}$=0,|$\overrightarrow{PF1}$|•|$\overrightarrow{PF2}$|=2,则a的值等于(  )
A.2B.1C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线x+2y+1=0被圆(x-2)2+(y-1)2=25所截得的弦长为(  )
A.5$\sqrt{5}$B.4$\sqrt{5}$C.3$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=-2x+1在[-1,2]上的最大值和最小值分别是3,-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若f(x)=-x2+2ax与g(x)=$\frac{1}{x+a}$在区间[1,2]上都是减函数,则a的取值范围是(  )
A.(-∞,1]B.[0,1]C.(-2,-1)∪(-1,1]D.(-∞,-2)∪(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=30°以及∠MAC=105°;从C点测得∠MCA=45°.已知山高BC=150米,则所求山高MN为(  )米.
A.300$\sqrt{3}$B.150$\sqrt{6}$C.150$\sqrt{3}$D.300$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.围建一个地面面积为900平方米的矩形场地的围墙,有一面长度为a米(0<a≤30)的旧墙(图中斜杠部分),有甲、乙两种维修利用旧墙方案.甲方案:选取部分旧墙维修后单独作为矩形场地的一面围墙(如图①,多余部分不维修);乙方案:旧墙全部利用,维修后再续建一段新墙共同作为矩形场地的一面(如图②).已知旧墙维修费用为10元/米,新墙造价为80元/米.

(1)如果按甲方案修建,怎样修建,使得费用最小?
(2)如果按乙方案修建,怎样修建,使得费用最小?
(3)比较两种方案,哪种方案更好?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若(3x-1)7=a7x7+a6x6+…+a1x+a0,则a1+a3+a5+a7=(  )
A.26-213B.26+213C.27-214D.27+214

查看答案和解析>>

同步练习册答案