精英家教网 > 高中数学 > 题目详情
5.在区间[-6,6]内任取一个元素x0,若抛物线x2=2y在x=x0处的切线的斜率为k,则k∈[-1,1]的概率为$\frac{1}{6}$.

分析 由切线斜率的范围,由导数的几何意义求出x0的范围,进而求出x0所在区间的长度,最后得出答案.

解答 解:由k∈[-1,1],
x2=2y,则 y′=x,
所以-1≤x0≤1,
∴[-6,6]∩[-1,1]=[-1,1],
∴点x0所在区间的长度=2,区间[-6,6]的长度=12,
所以P=$\frac{2}{12}$=$\frac{1}{6}$.
故答案为:$\frac{1}{6}$.

点评 本题考查导数的几何意义和几何概型的应用,正确理解题意是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD的底面为矩形,AB=$\sqrt{2}$,BC=1,E,F分别是AB,PC的中点,DE⊥PA,求证:平面PAC⊥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设向量$\overrightarrow{a}$=($\sqrt{3}$sinx,sinx),$\overrightarrow{b}$=($\frac{\sqrt{6}}{2}$,$\frac{\sqrt{6}}{2}$),$\overrightarrow{c}$=(cosx,sinx),x∈[0,$\frac{π}{2}$]
(1)若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,求x的值
(2)设函数f(x)=$\overrightarrow{b}$•$\overrightarrow{c}$,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.把长度AB和宽AD分别为2$\sqrt{3}$和2的长方形ABCD沿对角线AC折成60°的二面角,则|$\overrightarrow{BD}$|等于$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某程序框图如图所示,则输出的结果为(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{m}$=(1,1),$\overrightarrow{n}$与$\overrightarrow{m}$的夹角为$\frac{3π}{4}$,且$\overrightarrow{m}$•$\overrightarrow{n}$=-1,则向量$\overrightarrow{n}$=(  )
A.(-1,0)B.(0,-1)C.(-1,0)或(0,-1)D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:若x2+y2=0,则x=0或y=0;命题q:?x∈R,都有cos2x+4sinx-3≤0.给出下列结论
①命题p的否命题:若x2+y2≠0,则x≠0或y≠0;
②命题“p∧q”是真命题;
③命题q的否定:?x0∈R,使得cos2x0+4sinx0-3>0;
④命题“?p∨?q”是假命题,
其中错误的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=8,$\overrightarrow{a}$与$\overrightarrow{b}$夹角是120°.
(1)求$\overrightarrow{a}•\overrightarrow{b}$的值及|$\overrightarrow{a}+\overrightarrow{b}$|的值;
(2)当k为何值时,$(\overrightarrow{a}+2\overrightarrow{b})⊥(k\overrightarrow{a}-\overrightarrow{b})$?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数$\frac{2i}{1+i}$=(  )
A.1+iB.-1+iC.1-iD.-1-i

查看答案和解析>>

同步练习册答案