精英家教网 > 高中数学 > 题目详情
5.已知等差数列{an}满足a12+a102≤10,试对所有满足条件的数列{an},求S=a10+a11+…+a19的最大值50.

分析 设等差数列的公差为d,易得(a10-9d)2+a102=10,由求和公式可得a10=$\frac{S-45d}{10}$,代入(a10-9d)2+a102=10整理可得关于d的不等式,由△≥0可得S的不等式,解不等式可得S的范围,可得最大值.

解答 解:设等差数列{an}的公差为d,
∵a12+a102≤10,∴(a10-9d)2+a102≤10,
又∵S=a10+a11+…+a19=10a10+45d,
∴a10=$\frac{S-45d}{10}$,
代入(a10-9d)2+a102≤10整理可得(1352+452)d2-360dS+2S2-1000≤0,
由关于d的二次不等式有解可得△=3602S2-4(1352+452)(2S2-1000)≥0,
化简可得S2≤2500,解得S≤50,
∴S=a10+a11+…+a19的最大值为50
故答案为:50

点评 本题考查等差数列的性质和二次函数方程根的存在性,属中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足$\left\{{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≥0}\end{array}}\right.$,则x+y-1的取值范围是(  )
A.[-1,3]B.[0,4]C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{sin2x}{cosx}$+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$),则其最小值为(  )
A.1B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若正方体ABCD-A1B1C1D1的棱长为1,则三棱锥B-B1C1D的体积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c(x≤0)}\\{2(x>0)}\end{array}\right.$,若f(-2)=f(0),f(-1)=-3,求关于x的方程f(x)=x的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a∈R,f(x)=(x2-4)(x-a).
(1)求f′(x);
(2)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值;
(3)若f(x)在(-∞,-2]和[2,+∞)上是单调递增的,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(x-1)10的展开式的第6项系数是-252.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的最小正周期及对称中心.
(1)f(x)=$\sqrt{co{s}^{2}x-co{s}^{4}x}$;
(2)f(x)=cos$\frac{π}{2}$x•cos[$\frac{π}{2}$(x-1)];
(3)f(x)=sinx•cosx-2sin3xcosx;
(4)f(x)=sin6x+cos6x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=1+$\frac{m}{{e}^{x}-1}$(e为自然对数的底数)是奇函数,则实数m的值为2.

查看答案和解析>>

同步练习册答案