精英家教网 > 高中数学 > 题目详情
20.如图,一船由西向东航行,在A处测得某岛M的方位角为α,前进5km后到达B处,测得岛M的方位角为β.已知该岛周围3km内有暗礁,现该船继续东行.
(Ⅰ)若α=2β=60°,问该船有无触礁危险?
(Ⅱ)当α与β满足什么条件时,该船没有触礁的危险?

分析 (Ⅰ)在△ABM中可知,AB=BM=5,求出MC与3比较,即可得到结论;
(Ⅱ)在△ABM中由正弦定理得可得MC,当且仅当MC>3时没有触礁危险.

解答 解:(Ⅰ)在△ABM中可知,AB=BM=5,…4分
从而MC=5sin60°=$\frac{5}{2}\sqrt{3}$>3,没有触礁危险.…8分
(Ⅱ)设CM=x,在△ABM中由正弦定理得,$\frac{5}{sin(α-β)}=\frac{x}{cosαcosβ}$,
解得x=$\frac{5cosαcosβ}{sin(α-β)}$,…14分
所以当$\frac{5cosαcosβ}{sin(α-β)}$>3时没有触礁危险.…16分.

点评 本题考查利用数学知识解决实际问题,考查学生分析解决问题轭能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系xOy中,已知抛物线x2=y的焦点为F,点P1(1,1),Qn(n,n2)(n∈N*),连接OP1,作抛物线的切线l1,使之与直线OP1平行,所得切点记为P2(a2,a${\;}_{2}^{2}$)再作抛物线的切线l2,使之与直线OP2平行,所得切点记为P3(a3,a${\;}_{3}^{2}$)…以此类推,得到数列{an},若a1=1,数列{bn}满足|QnF|=nbn+$\frac{1}{4}$,则数列{anbn}的前n项和为(  )
A.(n-1)•2n+1B.$\frac{n+2}{{2}^{n-1}}$-2C.$\frac{2-n}{{2}^{n-1}}$D.4-$\frac{n+2}{{2}^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数$\frac{5}{i-2}$的共轭复数是(  )
A.2+iB.-2-iC.-2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若曲线f(x)=sinx+$\sqrt{3}$cosx的切线的斜率为k,则k的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的前n项和为Sn,若Sn=2n+1,则a3=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的导数为f′(x),且满足关系式f(x)=x2+3xf′(2)+lnx,则f′(2)的值等于(  )
A.-2B.2C.$-\frac{9}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$f(α)=\frac{{sin(α-π)cos(2π-α)cos(-α+\frac{3}{2}π)}}{{cos(\frac{π}{2}-α)sin(-π-α)}}$
(1)化简f(α);
(2)若$f(θ-\frac{π}{3})=-\frac{1}{7}$,$-\frac{π}{2}<θ<\frac{π}{2}$,求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数$y=\frac{2x+4}{x-2},x∈[0,3]且x≠2$的值域为(-∞,-2]∪[10,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$sinx=\frac{{\sqrt{3}}}{5}(\frac{π}{2}<x<π)$,则x的值(  )
A.$arcsin\frac{{\sqrt{3}}}{5}$B.arcsin(-$\frac{\sqrt{3}}{5}$)C.π-arcsin$\frac{{\sqrt{3}}}{5}$D.$\frac{π}{2}+arcsin\frac{{\sqrt{3}}}{5}$

查看答案和解析>>

同步练习册答案