| A. | ($\frac{1}{2}$,2) | B. | ($\frac{1}{3}$,3) | C. | [1,3] | D. | [$\frac{1}{4}$,1] |
分析 设x=rcosθ,y=rsinθ可得r=$\frac{1}{cosθ}$+$\frac{m}{sinθ}$,换元可得f(θ)的表达式,由f′(θ)=0,可得m=$\frac{cosθ-(-1)}{sinθ-(-1)}$,由斜率的几何意义可得.
解答 解:由题意设x=rcosθ,y=rsinθ,
(r>0,0<θ<$\frac{π}{2}$)
∵$\frac{1}{x}+\frac{m}{y}$=1,∴r=$\frac{1}{cosθ}$+$\frac{m}{sinθ}$,
∴f(θ)=x+y-$\sqrt{{x}^{2}+{y}^{2}}$=r(sinθ+cosθ-1)
=($\frac{1}{cosθ}$+$\frac{m}{sinθ}$)(sinθ+cosθ-1)=1+m+$\frac{sinθ-1}{cosθ}$+$\frac{m(cosθ-1)}{sinθ}$,
求导数可得f′(θ)=$\frac{co{s}^{2}θ+cosθ(sinθ-1)}{co{s}^{2}θ}$+$\frac{-msi{n}^{2}θ-m(cosθ-1)cosθ}{si{n}^{2}θ}$,
令f′(θ)=0,可得m=$\frac{cosθ-(-1)}{sinθ-(-1)}$,
m表示动点Q(cosθ,sinθ)到定点P(-1,-1)的斜率,
又可得动点Q的轨迹为的单位圆在第一象限的部分,
由图可知:斜率的最大值为kPB=2,最小值为kPA=$\frac{1}{2}$,
∴m的范围为($\frac{1}{2}$,2).
故选:A
点评 本题考查函数的最值,涉及三角换元和数形结合的思想,涉及斜率公式和导数,属难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,+∞) | B. | (-2,-1] | C. | (-1,3) | D. | [-1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com