精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=|2x+1|-|x-4|
(1)解关于x的不等式 f(x)>2
(2)若不等式$f(x)≥ax+\frac{a}{2}-\frac{7}{2}$恒成立,求实数a的取值范围.

分析 (1)分类讨论,去掉绝对值,再解不等式即可;
(2)利用函数的图象,可得实数a的取值范围.

解答 解:(1)x≤-$\frac{1}{2}$时,不等式化为-x-5>2,可得x<-7;
-$\frac{1}{2}$<x<4时,不等式化为3x-3>2,可得$\frac{5}{3}$<x<4;
x≥4时,不等式化为x+5>2,可得x≥4;
∴不等式解集为$({-∞,-7})∪({\frac{5}{3},+∞})$…(5分)
(2)$f(x)=\left\{\begin{array}{l}{x+5}&{x≥4}&{\;}\\{3x-3}&{-\frac{1}{2}<x<4}&{\;}\\{-x-5}&{x≤-\frac{1}{2}}&{\;}\end{array}$
y=ax+$\frac{a}{2}$-$\frac{7}{2}$恒过(-0.5,-3.5)
所以由函数的图象可得-1≤a≤1

点评 本题考查不等式的解法,考查数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若存在满足$\frac{1}{x}+\frac{m}{y}$=1(m>0,且m为常量)的变量x,y(x>0,y>0)使得表达式x+y-$\sqrt{{x}^{2}+{y}^{2}}$的最大值,则m的取值范围是(  )
A.($\frac{1}{2}$,2)B.($\frac{1}{3}$,3)C.[1,3]D.[$\frac{1}{4}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知2sin2x-cos2x+sinxcosx-6sinx+3cosx=0,求$\frac{2co{s}^{2}x+2sinxcosx}{1+tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2渐近线分别为l1,l2,位于第一象限的点P在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知O为△ABC的外心,AB=2a,AC=$\frac{2}{a}$,∠BAC=120°,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则3x+6y的最小值为$6+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个几何体的三视图如图所示,则该几何体的体积的是(  )
A.$\frac{47}{6}$B.$\frac{23}{3}$C.$\frac{15}{2}$D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=8,P是双曲线右支上的一点,直线F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=2,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设P是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上的任意一点,已知A(a,b),B(a,-b),若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(O为坐标原点),则λ22的最小值为(  )
A.$\frac{1}{4}$abB.$\frac{1}{4}$C.$\frac{1}{2}$abD.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设等差数列{an}满足a1=1,an>0(n∈N*),其前n项和为Sn,若数列{$\sqrt{{S}_{n}}$}也为等差数列,则$\frac{{S}_{n+10}}{{{a}_{n}}^{2}}$的最大值是(  )
A.310B.212C.180D.121

查看答案和解析>>

同步练习册答案