精英家教网 > 高中数学 > 题目详情
3.一个几何体的三视图如图所示,则该几何体的体积的是(  )
A.$\frac{47}{6}$B.$\frac{23}{3}$C.$\frac{15}{2}$D.7

分析 由已知的三视图可得:该几何体是一个正方体截去一个三棱锥所得的组合体,分别计算体积后,相减可得答案.

解答 解:由已知的三视图可得:该几何体是一个正方体截去一个三棱锥所得的组合体,
正方体的棱长为2,故体积为:2×2×2=8,
三棱锥的底面是一个直角边长为1的等腰直角三角形,高为1,故体积为:$\frac{1}{3}$×$\frac{1}{2}$×1×1×1=$\frac{1}{6}$,
故几何体的体积V=8-$\frac{1}{6}$=$\frac{47}{6}$,
故选:A

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知在△ABC中,D为BC边上的点,且AD=BD,∠BDE=∠DAC,求证:$\frac{BE}{EA}$=$\frac{DC}{BD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在不等式$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面区域中任取一点P,则点P(x,y)满足y≤x3的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是定义在R上周期为2的偶函数,当x∈[0,1]时,f(x)=x,若在区间(-2,+∞)内,函数h(x)=f(x)-loga(x+2)恰有3个零点,则a的取值范围是(  )
A.(1,3)B.(2,4)C.(3,5)D.(5,7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|2x+1|-|x-4|
(1)解关于x的不等式 f(x)>2
(2)若不等式$f(x)≥ax+\frac{a}{2}-\frac{7}{2}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足a1=1,点(an,an+1)在直线y=2x+1上.数列{bn}满足b1=a1,${b_n}={a_n}(\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{n-1}}}})$(n≥2且n∈N*).
(Ⅰ)(i)求{an}的通项公式;(ii)证明:$\frac{{1+{b_n}}}{{{b_{n+1}}}}=\frac{a_n}{{{a_{n+1}}}}$(n≥2且n∈N*);
(Ⅱ)求证:$({1+\frac{1}{b_1}})({1+\frac{1}{b_2}})…({1+\frac{1}{b_n}})<\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等腰三角形的一个底角的正弦等于$\frac{{\sqrt{3}}}{3}$,则它的顶角的余弦值是-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线C:x2-$\frac{{y}^{2}}{3}$=1,则C的顶点到其渐近线的距离等于(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案