精英家教网 > 高中数学 > 题目详情
10.如图,已知正三角形BCD外一点A满足AB=AD,E,F分别是AB,BC的中点,且EF⊥DE,则∠BAC=$\frac{π}{2}$.

分析 取BD的中点M,连结AM,CM,则BD⊥平面ACM,于是BD⊥AC,由中位线定理得EF∥AC,由EF⊥DE,故AC⊥DE,于是AC⊥平面ABD,得出AC⊥AB.

解答 解:取BD的中点M,连结AM,CM,
∵AB=AD,BC=CD,
∴AM⊥BD,CM⊥BD,又AM?平面ACM,CM?平面ACM,AM∩CM=M,
∴BD⊥平面ACM,∵AC?平面ACM,
∴BD⊥AC,
∵E,F是AB,BC的中点,∴EF∥AC,
∵EF⊥DE,
∴AC⊥DE,
又DE?平面ABD,BD?平面ABD,DE∩BD=D,
∴AC⊥平面ABD,∵AB?平面ABD,
∴AC⊥AB.
故答案为:$\frac{π}{2}$.

点评 本题考查了线面垂直的判定与性质,三线合一是等腰三角形中构造垂线的常用依据,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若集合A={-2,-1,0,1,2},B={x|2x>1},则A∩B=(  )
A.{-1,2}B.{0,1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正方体ABCD-A1B1C1D1中.E是AA1的中点,画出过D1,C,E的平面与平面ABB1A1的交线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算:lg20-lg2-${(\frac{1}{3})^{{{log}_3}2}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤5}\\{x-y≤-2}\end{array}\right.$,则$\frac{2y-1}{2x+3}$的最大值为$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}中,a1=1,若an+1=3an+2(n∈N*),则数列{an}的通项公式an=(  )
A.2×3n-1B.2×3n-1-1C.2×3n-1+1D.3×2n-1-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和Sn=$\frac{1}{2}$(n2+n),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四边形A′B′C′D′是直角梯形,它是四边形ABCD水平放置时的直观图,下底A′B′=20,上底C′D′=10,垂直于底的腰B′C′=10,求B′C′在原平面图形ABCD中的对应线段BC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知z1、z2均为复数,下列四个命题中,为真命题的是(  )
A.|z1|=|$\overline{{z}_{1}}$|=$\sqrt{{{z}_{1}}^{2}}$
B.若|z2|=2,则z2的取值集合为{-2,2,-2i,2i}(i是虚数单位)
C.若z12+z22=0,则z1=0或z2=0
D.z1$\overline{{z}_{2}}$+$\overline{{z}_{1}}$z2一定是实数

查看答案和解析>>

同步练习册答案