精英家教网 > 高中数学 > 题目详情
18.计算:lg20-lg2-${(\frac{1}{3})^{{{log}_3}2}}$=$\frac{1}{2}$.

分析 直接利用导数的运算法则化简求解即可.

解答 解:lg20-lg2-${(\frac{1}{3})^{{{log}_3}2}}$=lg10-${3}^{lo{g}_{3}{2}^{-1}}$=1-$\frac{1}{2}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查对数运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB1,BC1的中点,则以下结论中不成立的是③.(填序号)
①EF与CC1垂直;②EF与BD垂直;③EF与A1C1异面;④EF与AD1异面.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合M={x|y=$\sqrt{{{log}_2}x-1}$},N={x||x-1|≤2},则M∩N=(  )
A.[2,+∞)B.[-1,3]C.[2,3]D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数($\frac{1+i}{1-i}$)3的模是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果复数(1+bi)(2+i)是纯虚数,则$|{\frac{2b+3i}{1+bi}}|$的值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若复数z满足(2-i)z=4+3i(i为虚数单位),则|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,已知正三角形BCD外一点A满足AB=AD,E,F分别是AB,BC的中点,且EF⊥DE,则∠BAC=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了研究钟表与三角函数的关系,以9点与3点所在直线为x轴,以6点与12点为y轴,设秒针针尖指向位置P(x,y),若初始位置为P0($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),秒针从P0(注此时t=0)开始沿顺时针方向走动,则点P的纵坐标y与时间t(秒)的函数关系为(  )
A.y=sin($\frac{π}{30}$t+$\frac{π}{3}$)B.y=sin($\frac{π}{30}$t-$\frac{π}{3}$)C.y=sin(-$\frac{π}{30}$t+$\frac{π}{3}$)D.y=sin(-$\frac{π}{30}$t-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an},a1=1,a2=2,前n项和为Sn,且满足(Sn+2-Sn+1)-2(Sn+1-Sn)=2,n∈N*,则{an}的通项an=$\left\{\begin{array}{l}{1,n=1}\\{{2}^{n}-2,n≥2}\end{array}\right.$.

查看答案和解析>>

同步练习册答案