精英家教网 > 高中数学 > 题目详情
5.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤5}\\{x-y≤-2}\end{array}\right.$,则$\frac{2y-1}{2x+3}$的最大值为$\frac{7}{5}$.

分析 作出不等式组对应的平面区域,结合直线斜率的应用,利用数形结合进行求解即可.

解答 解:作出不等式组对应的平面区域,
$\frac{2y-1}{2x+3}$=$\frac{y-\frac{1}{2}}{x+\frac{3}{2}}$,则对应的几何意义是区域内的点到点(-$\frac{3}{2}$,$\frac{1}{2}$)的斜率,
由图象知AD的斜率最大,
由$\left\{\begin{array}{l}{x=1}\\{x+y=5}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,即A(1,4),
此时$\frac{2y-1}{2x+3}$=$\frac{2×4-1}{2+3}$=$\frac{7}{5}$,
故答案为:$\frac{7}{5}$.

点评 本题主要考查线性规划的应用,利用直线斜率的几何意义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列函数中,既是奇函数又在R上单调递减的是(  )
A.y=$\frac{1}{x}$B.y=e-xC.y=-x3D.y=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在如图所示的几何体中,四边形BB1C1C是矩形,BB1⊥平面ABC,A1B1∥AB,AB=2A1B1,E是AC的中点.
(1)求证:A1E∥平面BB1C1C;
(2)若AC=BC,AB=2BB1,求证:平面BEA1⊥平面AA1C1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果复数(1+bi)(2+i)是纯虚数,则$|{\frac{2b+3i}{1+bi}}|$的值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:
①对于任意一个圆O,其“优美函数”有无数个;
②正弦函数y=sinx可以同时是无数个圆的“优美函数”;
③函数f(x)=ln(x2+$\sqrt{{x^2}+1$)可以是某个圆的“优美函数”;
④函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.
其中正确的命题是①②(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,已知正三角形BCD外一点A满足AB=AD,E,F分别是AB,BC的中点,且EF⊥DE,则∠BAC=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足,a1=1,an+1=$\frac{1}{2}$an+1(n∈N*).
(I)求证:数列{an-2}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn=(2n-1)•(2-an)(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在数列{an}中,a1=2,(an+1-1)(an-1)+2an+1-2an=0(n∈N*),若an<$\frac{51}{50}$,则n的最小值为100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知sinx=$\frac{3}{5}$,x∈($\frac{π}{2}$,π),则行列式$|\begin{array}{l}{sinx}&{-1}\\{1}&{secx}\end{array}|$的值等于$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案