精英家教网 > 高中数学 > 题目详情
2.已知数列{an}的前n项和Sn=$\frac{1}{2}$(n2+n),求数列{an}的通项公式.

分析 由Sn,可得当n=1时,求出a1,当n≥2时,an=Sn-Sn-1,即可得出数列{an}的通项公式.

解答 解:∵Sn=$\frac{1}{2}$(n2+n),∴当n=1时,a1=$\frac{1}{2}$(1+1)=1,
当n≥2时,an=Sn-Sn-1=$\frac{1}{2}$(n2+n)-$\frac{1}{2}$[(n-1)2+(n-1)]=n.
当n=1时上式也成立,
∴an=n.

点评 本题考查了递推式的应用、等差数列的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若一个边长为a的正三角形,以其中一条高作为轴旋转,则所得旋转体的表面积为(  )
A.$\frac{1}{4}$πa2B.$\frac{1}{2}$πa2C.$\frac{3}{4}$πa2D.$\frac{1}{8}$πa2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如果复数(1+bi)(2+i)是纯虚数,则$|{\frac{2b+3i}{1+bi}}|$的值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,已知正三角形BCD外一点A满足AB=AD,E,F分别是AB,BC的中点,且EF⊥DE,则∠BAC=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足,a1=1,an+1=$\frac{1}{2}$an+1(n∈N*).
(I)求证:数列{an-2}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn=(2n-1)•(2-an)(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了研究钟表与三角函数的关系,以9点与3点所在直线为x轴,以6点与12点为y轴,设秒针针尖指向位置P(x,y),若初始位置为P0($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),秒针从P0(注此时t=0)开始沿顺时针方向走动,则点P的纵坐标y与时间t(秒)的函数关系为(  )
A.y=sin($\frac{π}{30}$t+$\frac{π}{3}$)B.y=sin($\frac{π}{30}$t-$\frac{π}{3}$)C.y=sin(-$\frac{π}{30}$t+$\frac{π}{3}$)D.y=sin(-$\frac{π}{30}$t-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在数列{an}中,a1=2,(an+1-1)(an-1)+2an+1-2an=0(n∈N*),若an<$\frac{51}{50}$,则n的最小值为100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,等腰梯形ABCD,BC=$\frac{1}{2}$AD,将直径为4的半圆内的阴影部分以直径AD所在直线为轴,旋转一周得到一几何体,求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.圆柱的轴截面是正方形,其底面半径为r,则它的体积是2πr3

查看答案和解析>>

同步练习册答案