精英家教网 > 高中数学 > 题目详情
12.圆柱的轴截面是正方形,其底面半径为r,则它的体积是2πr3

分析 圆柱的高等于底面直径2r,代入体积公式即可.

解答 解:∵圆柱的轴截面是正方形,其底面半径为r,
∴圆柱的高为2r.
∴圆柱的体积V=πr2×2r=2πr3
故答案为2πr3

点评 本题考查了圆柱的结构特征和体积公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和Sn=$\frac{1}{2}$(n2+n),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=x${\;}^{\frac{1}{2}}$,则f(x)的反函数f-1(x)的定义域是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知z1、z2均为复数,下列四个命题中,为真命题的是(  )
A.|z1|=|$\overline{{z}_{1}}$|=$\sqrt{{{z}_{1}}^{2}}$
B.若|z2|=2,则z2的取值集合为{-2,2,-2i,2i}(i是虚数单位)
C.若z12+z22=0,则z1=0或z2=0
D.z1$\overline{{z}_{2}}$+$\overline{{z}_{1}}$z2一定是实数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足a1=2,an+an+1+n2=0.则a31=-463.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数既是奇函数又在(-1,1)上是增函数的是(  )
A.y=cos($\frac{π}{2}$+x)B.y=-$\frac{2}{x}$C.y=ln$\frac{2-x}{2+x}$D.y=2x-2-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=2x2,则自变量从2变到2+△x函数值的增量△y为(  )
A.8B.8+2△xC.2(△x)2+8△xD.4△x+2(△x)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在等比数列中,a1=9,a2是3和12的等比中项,求a4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在三棱柱ABC-A1B1C1中,△ABC为等边三角形,侧棱AA1⊥平面ABC,AB=2,AA1=2$\sqrt{3}$,D、E分别为AA1、BC1的中点.
(1)求证:DE⊥平面BB1C1C;
(2)求BC与平面BC1D所成角;
(3)求三棱锥C-BC1D的体积.

查看答案和解析>>

同步练习册答案