精英家教网 > 高中数学 > 题目详情
4.如图,在三棱柱ABC-A1B1C1中,△ABC为等边三角形,侧棱AA1⊥平面ABC,AB=2,AA1=2$\sqrt{3}$,D、E分别为AA1、BC1的中点.
(1)求证:DE⊥平面BB1C1C;
(2)求BC与平面BC1D所成角;
(3)求三棱锥C-BC1D的体积.

分析 (1)取BC中点F,连结AF,EF,则可证四边形AFED是平行四边形,得出DE∥AF,将问题转化为证明AF⊥平面BB1C1C;
(2)过C作CM⊥BC1于M点,则CM⊥平面BC1D,于是∠CBC1就是BC与平面BC1D所成的角,在Rt△BCC1解出∠CBC1即可;
(3)V${\;}_{C-B{C}_{1}D}$=V${\;}_{D-BC{C}_{1}}$=$\frac{1}{3}{S}_{△BC{C}_{1}}•DE$.

解答 证明:(1)取BC中点F,连结AF,EF,
∵E,F分别是BC1,BC的中点,
∴$EF∥C{C_1},EF=\frac{1}{2}C{C_1}$,
∵$AD∥C{C_1},AD=\frac{1}{2}C{C_1}$,
∴EF∥AD,EF=AD,
∴四边形AFED为平行四边形,
∴DE∥AF,
∵△ABC为等边三角形,
∴AF⊥BC,
∵CC1⊥平面ABC,AF?平面ABC,
∴CC1⊥AF,又CC1?平面BB1C1C,BC?平面BB1C1C,BC∩CC1=C,
∴AF⊥平面BB1C1C,又DE∥AF,
∴DE⊥平面BB1C1C.
(2)由(1)可得,平面AFED⊥平面BB1C1C,
过C作CM⊥BC1于M点,则CM⊥平面BC1D,
∴∠CBC1就是BC与平面BC1D所成的角,
∵$tan∠CB{C_1}=\frac{{C{C_1}}}{BC}=\sqrt{3}$,
∴∠CBC1=60°.即BC与平面BC1D所成角为60°.
(3)∵△ABC是边长为2的等边三角形,∴AF=$\sqrt{3}$.∴DE=$\sqrt{3}$.
∴V${\;}_{C-B{C}_{1}D}$=V${\;}_{D-BC{C}_{1}}$=$\frac{1}{3}{S}_{△BC{C}_{1}}•DE$=$\frac{1}{3}×\frac{1}{2}×2×2\sqrt{3}×\sqrt{3}$=2.

点评 本题考查了线面垂直的判定,线面角的计算,棱锥的体积,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.圆柱的轴截面是正方形,其底面半径为r,则它的体积是2πr3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(2,x),若$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$+$\overrightarrow{b}$夹角为$\frac{π}{2}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=6$\sqrt{2}$或3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\overrightarrow{a}$•$\overrightarrow{b}$=2,且($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,则|2$\overrightarrow{b}$-$\overrightarrow{c}$|的最小值为$\sqrt{7}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系中,|$\overrightarrow{a}$|=2014,$\overrightarrow{a}$与x轴非负半轴的夹角为$\frac{π}{3}$,$\overrightarrow{a}$始点与原点重合,终点在第一象限,则向量$\overrightarrow{a}$的坐标是(  )
A.(1007$\sqrt{2}$,1007$\sqrt{2}$)B.(-1007$\sqrt{2}$,1007$\sqrt{2}$)C.(1007,1007$\sqrt{3}$)D.(1007$\sqrt{3}$,1007)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P是侧棱CC1上的一点,CP=m.
(Ⅰ)试确定m,使直线AP与平面BDD1B1所成角的正切值为3$\sqrt{2}$;
(Ⅱ)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q垂直于AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如表:
上一年出险次数012345次以上(含5次)
下一年保费倍率85%100%125%150%175%200%
连续两年没出险打7折,连续三年没出险打6折
经验表明新车商业险保费与购车价格有较强的线性关系,下面是随机采集的8组数据(x,y)(其中x(万元)表示购车价格,y(元)表示商业车险保费):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),设由着8组数据得到的回归直线方程为:$\widehat{y}$=b$\widehat{x}$+1055.
(1)求b;
(2)有评估机构从以往购买了车险的车辆中随机抽取了1000辆调查,得到一年中出险次数的频数分布如下(并用相应频率估计2016年度出险次数的概率):
一年中出险的次数012345次以上(含5次)
频数5003801001541
广东李先生2016年1月购买一辆价值20万元的新车,根据以上信息,试估计该车辆在2017年1月续保时应缴的商业险保费(精确到元),并分析车险新政是否总体上减轻了车主负担,(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在某城市气象部门的数据中,随机抽取100天的空气质量指数的监测数据如表
空气质量指数t(0,50](50,100](100,150](150,200)(200,300](300,+∞)
质量等级轻微污染轻度污染中度污染严重污染
天数K52322251510
(1)若该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量t(t取整数)存在如下关系y=$\left\{\begin{array}{l}{t,t≤100}\\{2t-100,100<t≤300}\\{\;}\end{array}\right.$且当t>300时,y>500,估计在某一医院收治此类病症人数超过200人的概率;
(2)若在(1)中,当t>300时,y与t的关系拟合与曲线 $\stackrel{∧}{y}$=a+blnt,现已取出了10对样本数据(ti,yi)(i=1,2,3,…,10)且知$\sum_{i=1}^{10}$lnti=70,$\sum_{i=1}^{10}$yi=6000,$\sum_{i=1}^{10}$yilnti=42500,$\sum_{i=1}^{10}$(lnti2=500试用可线性化的回归方法,求拟合曲线的表达式
(附:线性回归方程$\stackrel{∧}{y}$=a+bx中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x,y的取值如表:
 x
 y 11.3 3.2 5.6 8.9 
若依据表中数据所画的散点图中,所有样本点(xi,yi)(i=1,2,3,4,5)都在曲线y=$\frac{1}{2}$x2+a附近波动,则a=1.

查看答案和解析>>

同步练习册答案