分析 由已知数列递推式可得${a}_{n}+{a}_{n-1}=-(n-1)^{2}$(n≥2),两式作差可得an+1-an-1=-2n+1(n≥2).然后分别取n=2,4,…,30,得到15个等式,累加即可求得a31.
解答 解:在数列{an}中,由an+an+1+n2=0,
得${a}_{n+1}+{a}_{n}=-{n}^{2}$,
∴${a}_{n}+{a}_{n-1}=-(n-1)^{2}$(n≥2),
两式作差得:an+1-an-1=-2n+1(n≥2).
∴a3-a1=-3,a5-a3=-7,a7-a5=-11,…,a31-a29=-59.
累加得:${a}_{31}-{a}_{1}=15×(-3)+\frac{15×14×(-4)}{2}=-465$,
∴a31=-463.
故答案为:-463.
点评 本题考查数列递推式,考查了累加法求数列的通项公式,训练了等差数列前n项和得求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 24 | C. | 48 | D. | 96 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x-3y-5=0 | B. | 3x+y-5=0 | C. | x+3y-5=0 | D. | x-y-5=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1007$\sqrt{2}$,1007$\sqrt{2}$) | B. | (-1007$\sqrt{2}$,1007$\sqrt{2}$) | C. | (1007,1007$\sqrt{3}$) | D. | (1007$\sqrt{3}$,1007) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com