分析 (1)令x=1即可得出.
(2)(x2-2x-3)5化为(x-3)5(x+1)5,利用二项式定理展开可得:$[(-3)^{5}+{∁}_{5}^{1}(-3)^{4}x+{∁}_{5}^{2}(-3)^{3}{x}^{2}+…]$ $[1+{∁}_{5}^{1}x+{∁}_{5}^{2}{x}^{2}+…]$,即可得出.
解答 解:(1)令x=1,可得:(1-2-3)n=a0+a1+…+a2n,
∵$\sum_{i=0}^{2n}$ai=-1024,∴(-4)n=-1024,解得n=5.
(2)(x2-2x-3)5=(x-3)5(x+1)5=$[(-3)^{5}+{∁}_{5}^{1}(-3)^{4}x+{∁}_{5}^{2}(-3)^{3}{x}^{2}+…]$ $[1+{∁}_{5}^{1}x+{∁}_{5}^{2}{x}^{2}+…]$,
∴a1=$(-3)^{5}{∁}_{5}^{1}$+${∁}_{5}^{1}(-3)^{4}$=-810.
a2=$(-3)^{5}•{∁}_{5}^{2}$+${∁}_{5}^{1}(-3)^{4}•{∁}_{5}^{1}$+${∁}_{5}^{2}(-3)^{3}$=(-3)3×(90-75+10)=-675.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1-{a}^{n}}{1-a}$ | B. | $\frac{1-{a}^{n+1}}{1-a}$ | C. | 1+n或$\frac{1-{a}^{n}}{1-a}$ | D. | 1+n或$\frac{1-{a}^{n+1}}{1-a}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com