1£®¶¨ÒåÏòÁ¿$\overrightarrow{OM}=£¨a£¬b£©$µÄ¡°Ïà°éº¯Êý¡±Îªf£¨x£©=asinx+bcosx£»º¯Êýf£¨x£©=asinx+bcosxµÄ¡°Ïà°éÏòÁ¿¡±Îª$\overrightarrow{OM}=£¨a£¬b£©$£¨ÆäÖÐOÎª×ø±êÔ­µã£©£®¼ÇÆ½ÃæÄÚËùÓÐÏòÁ¿µÄ¡°Ïà°éº¯Êý¡±¹¹³ÉµÄ¼¯ºÏΪS£®
£¨1£©Éè$g£¨x£©=3sin£¨x+\frac{¦Ð}{2}£©+4sinx$£¬ÊÔÅжÏg£¨x£©ÊÇ·ñÊôÓÚS£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÒÑÖªh£¨x£©=cos£¨x+¦Á£©+2cosx£¬ÇÒh£¨x£©¡ÊS£¬ÇóÆä¡°Ïà°éÏòÁ¿¡±µÄÄ££»
£¨3£©ÒÑÖªM£¨a£¬b£©ÊǺ¯Êý$F£¨x£©=2x+\frac{1}{x}$µÄͼÏóÉÏÒ»¶¯µã£¬ÏòÁ¿$\overrightarrow{OM}$µÄ¡°Ïà°éº¯Êý¡±f£¨x£©ÔÚx=x0´¦È¡µÃ×î´óÖµ£®µ±µãMÔ˶¯Ê±£¬Çótan2x0µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÏÈÀûÓÃÓÕµ¼¹«Ê½¶ÔÆä»¯¼ò£¬ÔÙ½áºÏ¶¨Òå¼´¿ÉµÃµ½Ö¤Ã÷£»
£¨2£©Ïȸù¾Ý¶¨ÒåÇó³öÆäÏà°éÏòÁ¿£¬ÔÙ´úÈëÄ£³¤¼ÆË㹫ʽ¼´¿É£»
£¨3£©Ïȸù¾Ý¶¨ÒåµÃµ½º¯Êýf£¨x£©È¡µÃ×î´óֵʱ¶ÔÓ¦µÄ×Ô±äÁ¿x0£»ÔÙ½áºÏ¼¸ºÎÒâÒå¼°»ù±¾²»µÈʽÇó³ö$\frac{b}{a}$µÄ·¶Î§£¬×îºóÀûÓöþ±¶½ÇµÄÕýÇй«Ê½¼°ÕýÇк¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃµ½½áÂÛ£®

½â´ð £¨±¾ÌâÂú·Ö15·Ö£©
½â£º£¨1£©ÒòΪ£º$g£¨x£©=3sin£¨x+\frac{¦Ð}{2}£©+4sinx=4sinx+3cosx$£¬g£¨x£©µÄÏà°éÏòÁ¿Îª£¨4£¬3£©£¬
ËùÒÔ£ºg£¨x£©¡ÊS£» £¨3·Ö£©
£¨2£©¡ßh£¨x£©=cos£¨x+¦Á£©+2cosx=-sin¦Ásinx+£¨cos¦Á+2£©cosx£¬
¡àh£¨x£©µÄ¡°Ïà°éÏòÁ¿¡±Îª$\overrightarrow{OM}=£¨-sin¦Á£¬cos¦Á+2£©$£¬$|\overrightarrow{OM}|=\sqrt{{{£¨-sin¦Á£©}^2}+{{£¨cos¦Á+2£©}^2}}=\sqrt{5+4cos¦Á}$£®£¨7·Ö£©
£¨3£©$\overrightarrow{OM}$µÄ¡°Ïà°éº¯Êý¡±$f£¨x£©=asinx+bcosx=\sqrt{{a^2}+{b^2}}sin£¨x+ϕ£©$£¬ÆäÖÐ$tanϕ=\frac{b}{a}$£¬
µ±$x+ϕ=2k¦Ð+\frac{¦Ð}{2}£¬k¡ÊZ$ʱ£¬f£¨x£©È¡µÃ×î´óÖµ£¬
¹Ê${x_0}=2k¦Ð+\frac{¦Ð}{2}-ϕ£¬k¡ÊZ$£¬
¡à$tan{x_0}=tan£¨\frac{¦Ð}{2}-ϕ£©=\frac{1}{tanϕ}=\frac{a}{b}$£¬
¡à$tan2{x_0}=\frac{{2tan{x_0}}}{{1-{{tan}^2}{x_0}}}=\frac{{2•\frac{a}{b}}}{{1-\frac{a^2}{b^2}}}=\frac{2}{{\frac{b}{a}-\frac{a}{b}}}$£¬
ÓÖM£¨a£¬b£©ÊÇÂú×ã$b=2a+\frac{1}{a}$£¬
ËùÒÔ$\frac{b}{a}=2+\frac{1}{a^2}£¾2$£¬
Áî$m=\frac{b}{a}£¾2$£¬
¡à$tan2{x_0}=\frac{2}{{m-\frac{1}{m}}}$£¬m£¾2£¬
¡ß$tan2{x_0}=\frac{2}{{m-\frac{1}{m}}}$ÔÚ£¨1£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬
¡à$tan2{x_0}¡Ê£¨0£¬\frac{4}{3}£©$£¨15·Ö£©

µãÆÀ ±¾ÌâÖ÷ÒªÔÚж¨ÒåÏ¿¼²éÆ½ÃæÏòÁ¿µÄ»ù±¾ÔËËãÐÔÖÊÒÔ¼°Èý½Çº¯ÊýµÄÓйØÖªÊ¶£®ÊǶԻù´¡ÖªÊ¶µÄ×ۺϿ¼²é£¬ÐèÒªÓбȽÏÔúʵµÄ»ù±¾¹¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÉèÃüÌâP£º?x¡ÊR£¬x2-2x£¾a£¬ÃüÌâQ£º?x0¡ÊR£¬x02+2ax0+2-a=0£¬Èç¹û¡°P»òQ¡±ÎªÕ棬¡°PÇÒQ¡±Îª¼Ù£¬aµÄȡֵ·¶Î§£¨-2£¬-1£©¡È[1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¼«ÏÞ$\underset{lim}{x¡ú0}$$\frac{1}{2+{3}^{\frac{1}{x}}}$µÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®0B£®$\frac{1}{2}$C£®$\frac{1}{5}$D£®²»´æÔÚ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÃüÌâ¡°?x¡ÊR£¬x2-2x+3¡Ý0¡±µÄ·ñ¶¨ÊÇ?x¡ÊR£¬x2-2x+3£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªm£¬nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦Â£¬¦ÃÊÇÈý¸ö²»Í¬µÄÆ½Ãæ£¬ÔòÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èô¦Á¡Í¦Ã£¬¦Á¡Í¦Â£¬Ôò¦Ã¡Î¦ÂB£®Èôm¡În£¬m?¦Á£¬n?¦Â£¬Ôò¦Á¡Î¦Â
C£®Èôm¡În£¬m¡Í¦Á£¬n¡Í¦Â£¬Ôò¦Á¡Î¦ÂD£®Èôm¡În£¬m¡Î¦Á£¬Ôòn¡Î¦Á

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Éè$A=\left\{{x|y=\sqrt{1-{x^2}}}\right\}£¬B=\left\{{y|y=lg£¨{1-{x^2}}£©}\right\}$£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{£¨-1£¬1£©}B£®{£¨0£¬1£©}C£®[-1£¬0]D£®[0£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÉèбÂÊΪ2µÄÖ±Ïßl¹ýÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãF£®ÇÒÓëÅ×ÎïÏß½»ÓÚA£¬BÁ½µã£®¹ýA£¬BÁ½µã·Ö±ð×÷Å×ÎïÏßµÄ×¼ÏߵĴ¹Ïߣ¬´¹×ã·Ö±ðΪA1£¬B1£¬¼ÇËıßÐÎABB1A1µÄÃæ»ýΪS£®Ôò$\overrightarrow{AB}•\overrightarrow{{A}_{1}{B}_{1}}$=$\frac{4\sqrt{5}}{5}$S£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-\frac{1}{2}x+\frac{1}{4}£¬x¡Ê[0£¬\frac{1}{2}]}\\{\frac{2{x}^{2}}{x+2}£¬x¡Ê£¨\frac{1}{2}£¬1]}\end{array}\right.$£¬g£¨x£©=asin£¨$\frac{¦Ð}{3}$x+$\frac{3}{2}$¦Ð£©-2a+2£¨a£¾0£©£¬¸ø³öÏÂÁнáÂÛ£º
¢Ùº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬$\frac{2}{3}$]£»
¢Úº¯Êýg£¨x£©ÔÚ[0£¬1]ÉÏÊÇÔöº¯Êý£»
¢Û¶ÔÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚÇø¼ä[0£¬1]ÄÚºãÓн⣻
¢ÜÈô´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ$\frac{4}{9}$¡Üa¡Ü$\frac{4}{5}$£¬
ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅΪ¢Ù¢Ú¢Ü£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¹ýÅ×ÎïÏßy2=8xµÄ½¹µã×÷Ö±Ïß1£¬½»Å×ÎïÏßÓÚA£¬BÁ½µã£¬ÈôÏß¶ÎABµÄÖеãµÄºá×ø±êΪ3£¬Ôò|AB|=12£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸