精英家教网 > 高中数学 > 题目详情
12.极限$\underset{lim}{x→0}$$\frac{1}{2+{3}^{\frac{1}{x}}}$的结果是(  )
A.0B.$\frac{1}{2}$C.$\frac{1}{5}$D.不存在

分析 分两类讨论,求出函数在x=0处的左右极限,由于左右极限不相等,得出该极限不存在.

解答 解:根据题意,分两类讨论如下:
①x→0+时,$\frac{1}{x}$→+∞,${3}^{\frac{1}{x}}$→+∞,
所以,$\underset{lim}{x→{0}^{+}}$$\frac{1}{2+{3}^{\frac{1}{x}}}$=0;
①x→0-时,$\frac{1}{x}$→-∞,${3}^{\frac{1}{x}}$→0,
所以,$\underset{lim}{x→{0}^{-}}$$\frac{1}{2+{3}^{\frac{1}{x}}}$=$\frac{1}{2}$;
由于,$\underset{lim}{x→{0}^{+}}$$\frac{1}{2+{3}^{\frac{1}{x}}}$≠$\underset{lim}{x→{0}^{-}}$$\frac{1}{2+{3}^{\frac{1}{x}}}$,
所以,极限$\underset{lim}{x→0}$$\frac{1}{2+{3}^{\frac{1}{x}}}$不存在,
故答案为:D.

点评 本题主要考查了极限及其运算,涉及函数在某点处的左右极限,以及极限存在的条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=$\frac{\sqrt{2}}{2}$,则下列结论中错误的个数是(  )
(1)AC⊥BE;
(2)若P为AA1上的一点,则P到平面BEF的距离为$\frac{\sqrt{2}}{2}$;
(3)三棱锥A-BEF的体积为定值;
(4)在空间与三条直线DD1,AB,B1C1都相交的直线有无数条.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个年级共有12个班,每个班学生的学号从1到50,为交流学习经验,要求每班学号为14的同学留下,这里运用的是(  )
A.分层抽样法B.抽签法C.随机数表法D.系统抽样法

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设U={1,2,3,4},M={2,3},N={2,3,4},则(∁UM)∩N=(  )
A.{1,4}B.{2,3}C.{4}D.{2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,长轴为8,P是椭圆上的一点,PF2⊥F1F2,PF2=$\frac{1}{3}$PF1
(1)求椭圆方程;
(2)过椭圆左准线l上任意一点A引圆Q:x2+(y-$\frac{{b}^{2}}{2a}$)2=$\frac{9}{16}$a2的两条切线,切点分别为M,N.试探究直线MN是否过定点?若过定点,请求出该定点;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.f(x)=lg(sinx-cosx)的定义域是(2kπ+$\frac{π}{4}$,2kπ+$\frac{5π}{4}$)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若动点P到两个定点F1(-m,0),F2(m,0)(0<m<5)的距离之和为10.
(1)试写出动点P的轨迹曲线名称,并求其方程;
(2)动点P的轨迹曲线上是否存在一点Q,使QF1⊥QF2,若存在求出实数m的取值范围,若不存在说明理由;
(3)若抛物线y2=x与动点P的轨迹交于A,B两点,O为坐标原点,若△OAB为等边三角形,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.定义向量$\overrightarrow{OM}=(a,b)$的“相伴函数”为f(x)=asinx+bcosx;函数f(x)=asinx+bcosx的“相伴向量”为$\overrightarrow{OM}=(a,b)$(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.
(1)设$g(x)=3sin(x+\frac{π}{2})+4sinx$,试判断g(x)是否属于S,并说明理由;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)是函数$F(x)=2x+\frac{1}{x}$的图象上一动点,向量$\overrightarrow{OM}$的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设F(1,0)是抛物线G:y2=2px的焦点.
(Ⅰ)求抛物线及准线方程;
(Ⅱ)求过点P(0,-2)与抛物线G有一个公共点的直线方程;
(Ⅲ)若点P是抛物线上的动点,点P在y轴上的射影是Q,点$M({\frac{3}{2},\frac{{\sqrt{15}}}{2}})$,试判断|PM|+|PQ|是否存在最小值,若存在求出其最小值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案