精英家教网 > 高中数学 > 题目详情
3.一个年级共有12个班,每个班学生的学号从1到50,为交流学习经验,要求每班学号为14的同学留下,这里运用的是(  )
A.分层抽样法B.抽签法C.随机数表法D.系统抽样法

分析 学生人数比较多,把每个班级学生从1到50号编排,要求每班编号为14的同学留下进行交流,这样选出的样本是具有相同的间隔的样本,是采用系统抽样的方法.

解答 解:当总体容量N较大时,采用系统抽样.将总体分段,分段的间隔要求相等,这时间隔一般为预先制定的,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.
本题中,把每个班级学生从1到50号编排,
要求每班编号为14的同学留下进行交流,
这样选出的样本是采用系统抽样的方法,
故选:D.

点评 本题考查系统抽样,当总体容量N较大时,采用系统抽样,将总体分成均衡的若干部分即将总体分段,分段的间隔要求相等,系统抽样又称等距抽样.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.若α∈(π,2π),且sinα+cosα=$\frac{\sqrt{2}}{4}$.
(1)求cos2α-cos4α的值; 
(2)求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥S-ABCD中,底面ABCD是菱形,∠BAD=60°,侧面SAB⊥底面ABCD,并且SA=SB=AB=2,F为SD的中点.
(1)求三棱锥S-FAC的体积;
(2)求直线BD与平面FAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设命题P:?x∈R,x2-2x>a,命题Q:?x0∈R,x02+2ax0+2-a=0,如果“P或Q”为真,“P且Q”为假,a的取值范围(-2,-1)∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.定义:对于函数f(x),若存在非零常数M,T,使函数f(x)对于定义域内的任意实数x,都有f(x+T)-f(x)=M,则称函数f(x)是广义周期函数,其中称T为函数f(x)的广义周期,M称为周距.
(1)证明函数f(x)=x+(-1)x(x∈Z)是以2为广义周期的广义周期函数,并求出它的相应周距M的值;
(2)设函数y=g(x)是周期T=2的周期函数(即满足g(x+2)=g(x)),当函数f(x)=-2x+g(x)在[1,3]上的值域为[-3,3]时,求f(x)在[-9,9]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l:y=2x+2,曲线C:y=lnx+x,直线x=a,(a>0)交直线l于点A,交曲线C于点B,则|AB|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$y={log_{\frac{1}{3}}}(3+2x-{x^2})$的递增区间为(  )
A.[1,+∞)B.(-1,1]C.(-∞,1]D.[1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.极限$\underset{lim}{x→0}$$\frac{1}{2+{3}^{\frac{1}{x}}}$的结果是(  )
A.0B.$\frac{1}{2}$C.$\frac{1}{5}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设斜率为2的直线l过抛物线y2=2px(p>0)的焦点F.且与抛物线交于A,B两点.过A,B两点分别作抛物线的准线的垂线,垂足分别为A1,B1,记四边形ABB1A1的面积为S.则$\overrightarrow{AB}•\overrightarrow{{A}_{1}{B}_{1}}$=$\frac{4\sqrt{5}}{5}$S.

查看答案和解析>>

同步练习册答案