精英家教网 > 高中数学 > 题目详情
17.已知集合A={1,4,m},集合B={1,m2},若B⊆A,则实数m∈{0,2,-2}.

分析 根据题意,若B⊆A,则有m2=m或m2=4解可得答案,注意最后进行集合元素互异性的验证.

解答 解:由B⊆A,
得到:①m2=m.解得m=1(舍)或0.
②m2=4,解得m=2或m=-2,
m=2,集合A={1,4,2},集合B={1,4},符合集合元素的互异性,B⊆A;
m=-2,集合A={1,4,-2},集合B={1,4},符合集合元素的互异性,B⊆A;
m=0,集合A={1,4,0},集合B={1,0},符合集合元素的互异性,B⊆A;
故答案为:{0,2,-2}.

点评 本题考查元素的互异性即集合间的关系,注意解题时要验证互异性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)满足2f(-x)+f(x)=x,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算下列极限:
(1)$\underset{lim}{n→∞}$($\sqrt{n+1}$-$\sqrt{n}$);
(2)$\underset{lim}{n→∞}$$\sqrt{n}$($\sqrt{n+1}$-$\sqrt{n}$);
(3)$\underset{lim}{n→∞}$$\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}-\sqrt{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若一个函数恰有两个零点,则称这样的函数为“双胞胎”函数,若函数f(x)=|ax-lnx+$\frac{a-1}{x}$|-a-3(a<0)为“双胞胎”函数,则实数a的取值范围为(  )
A.(-$\frac{2}{3}$,+∞)B.(-∞,-$\frac{2}{3}$)C.(-$\frac{2}{3}$,0)D.(-1,-$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在正方形ABCD中,AB=2,点E、F分别在边AB、DC上,M为AD的中点,且$\overrightarrow{ME}•\overrightarrow{MF}$=0,则△MEF的面积的取值范围为(  )
A.$[{1,\frac{5}{4}}]$B.[1,2]C.$[{\frac{1}{2},\frac{5}{4}}]$D.$[{\frac{1}{2},\frac{3}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若(x2-3x+1)8•(2x-1)4=a0+a1x+a2x2+…+a20x20,则a2=380.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\frac{1}{{2x-{x^2}}}$,则f(x)的值域是(-∞,0)∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列函数的值域:
(1)y=$\frac{x-1}{2x+1}$;
(2)y=$\frac{{x}^{3}-1}{{x}^{3}+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若三棱锥的三条侧棱两两垂直,且侧棱长均为$\sqrt{3}$,则三棱锥的体积与其外接球体积之比是$\frac{\sqrt{3}}{9π}$.

查看答案和解析>>

同步练习册答案