分析 三棱锥为正三棱锥,利用勾股定理计算外接球的半径,代入体积公式求出三棱锥和外接球的体积即可得出体积比.
解答
解:设三棱锥S-ABC,则SA,SB,SC两两垂直,SA=SB=SC=$\sqrt{3}$,
∴SA⊥平面SBC,
∴VS-ABC=VA-SBC=$\frac{1}{3}{S}_{△SBC}•SA$=$\frac{1}{3}×\frac{1}{2}×\sqrt{3}×\sqrt{3}×\sqrt{3}$=$\frac{\sqrt{3}}{2}$.
∵SA=SB=SC=$\sqrt{3}$,且SA,SB,SC两两垂直,
∴AB=BC=AC=$\sqrt{6}$,即△ABC为等边三角形.
设△ABC的中心为O,连接OS,则OS⊥平面ABC,
设三棱锥外接球的球心为M,则M在直线OS上,
∵OC=$\frac{2}{3}$×$\frac{\sqrt{3}}{2}×\sqrt{6}$=$\sqrt{2}$,∴OS=$\sqrt{S{C}^{2}-O{C}^{2}}$=1,
设外接圆半径为r,则MS=MC=r,OM=r-1,
∵OM2+OC2=MC2,
∴(r-1)2+2=r2,解得r=$\frac{3}{2}$.
∴V外接球=$\frac{4}{3}π{r}^{3}$=$\frac{9π}{2}$.
∴$\frac{{V}_{S-ABC}}{{V}_{外接球}}$=$\frac{\sqrt{3}}{9π}$.
故答案为:$\frac{\sqrt{3}}{9π}$.
点评 本题考查了棱锥与外接球的关系,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,+∞) | B. | (-∞,-1] | C. | (1,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | $\frac{4}{3}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com